951 resultados para Two-phase gas-solid flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface tension forces are significant at millimeter length-scales, causing profoundly different flow morphologies in microchannels than in macroscale flows. The existence and morphology of thin liquid films is particularly relevant for predicting performance and operational stability of devices containing microscale two phase flows. Analytical, computational, and experimental methods previously employed in the study of thin liquid films are discussed. Thicknesses before and after a novel film morphology, referred to as a `shock,' are measured with a novel film thickness measurement technique that uses confocal microscopy. Film thicknesses predicted by previous work are compared to experimental results. Methods for increasing the accuracy of the confocal film thickness measurement technique are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: The splanchnic circulation has an important function in the body under both physiological and pathophysiological conditions. Despite its importance, no reliable noninvasive procedures for estimating splanchnic circulation have been established. The aim of this study was to evaluate MRI as a tool for assessing intra-abdominal blood flows of the aorta, portal vein (VPO) and the major intestinal and hepatic vessels. METHODS: In nine healthy volunteers, the proximal aorta (AOP) and distal abdominal aorta (AOD), superior mesenteric artery (SAM), celiac trunk (CTR), hepatic arteries (common and proper hepatic arteries, AHC and AHP, respectively), and VPO were localized on contrast-enhanced magnetic resonance angiography images. Volumetric flow was measured using a two-dimensional cine echocardiogram-gated phase contrast technique. Measurements were taken before and 30 min after continuous intravenous infusion of somatostatin (250 microg/h) and were independently evaluated by two investigators. RESULTS: Blood flow measured by MRI in the VPO, SAM, AOP, AHP, and CTR significantly decreased after drug infusion. Flows in the AOD and AHC showed a tendency to decrease (P>0.05). Interrater agreement on flows in MRI was very good for large vessels (VPO, AOP, and AOD), with a concordance correlation coefficient of 0.94, as well as for smaller vessels such as the CTR, AHC, AHP, and SAM (concordance correlation coefficient =0.78). CONCLUSION: Somatostatin-induced blood flow changes in the splanchnic region were reliably detected by MRI. MRI may be useful for the noninvasive assessment of blood flow changes in the splanchnic region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time-lapse pressure tomography inversion approach is applied to characterize the CO2 plume development in a virtual deep saline aquifer. Deep CO2 injection leads to flow properties of the mixed-phase, which vary depending on the CO2 saturation. Analogous to the crossed ray paths of a seismic tomographic experiment, pressure tomography creates streamline patterns by injecting brine prior to CO2 injection or by injecting small amounts of CO2 into the two-phase (brine and CO2) system at different depths. In a first step, the introduced pressure responses at observation locations are utilized for a computationally rapid and efficient eikonal equation based inversion to reconstruct the heterogeneity of the subsurface with diffusivity (D) tomograms. Information about the plume shape can be derived by comparing D-tomograms of the aquifer at different times. In a second step, the aquifer is subdivided into two zones of constant values of hydraulic conductivity (K) and specific storage (Ss) through a clustering approach. For the CO2 plume, mixed-phase K and Ss values are estimated by minimizing the difference between calculated and “true” pressure responses using a single-phase flow simulator to reduce the computing complexity. Finally, the estimated flow property is converted to gas saturation by a single-phase proxy, which represents an integrated value of the plume. This novel approach is tested first with a doublet well configuration, and it reveals a great potential of pressure tomography based concepts for characterizing and monitoring deep aquifers, as well as the evolution of a CO2 plume. Still, field-testing will be required for better assessing the applicability of this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O escoamento bifásico de gás-líquido é encontrado em muitos circuitos fechados que utilizam circulação natural para fins de resfriamento. O fenômeno da circulação natural é importante nos recentes projetos de centrais nucleares para a remoção de calor. O circuito de circulação natural (Circuito de Circulação Natural - CCN), instalado no Instituto de Pesquisas Energéticas e Nucleares, IPEN / CNEN, é um circuito experimento concebido para fornecer dados termo-hidráulicos relacionados com escoamento monofásico ou bifásico em condições de circulação natural. A estimativa de transferência de calor tem sido melhorada com base em modelos que requerem uma previsão precisa de transições de padrão de escoamento. Este trabalho apresenta testes experimentais desenvolvidos no CCN para a visualização dos fenômenos de instabilidade em ciclos de circulação natural básica e classificar os padrões de escoamento bifásico associados aos transientes e instabilidades estáticas de escoamento. As imagens são comparadas e agrupadas utilizando mapas auto-organizáveis de Kohonen (SOM), aplicados em diferentes características da imagem digital. Coeficientes da Transformada Discreta de Cossenos de Quadro Completo (FFDCT) foram utilizados como entrada para a tarefa de classificação, levando a bons resultados. Os protótipos de FFDCT obtidos podem ser associados a cada padrão de escoamento possibilitando uma melhor compreensão da instabilidade observada. Uma metodologia sistemática foi utilizada para verificar a robustez do método.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O trabalho aborda a aplicação da técnica de reconciliação de dados para o balanço da movimentação de gás natural em uma malha de escoamento de gás não processado, elaborando também um método de cálculo rápido de inventário de um duto. Foram aplicadas, separadamente, a reconciliação volumétrica à condição padrão de medição e a reconciliação mássica, bem como realizadas comparações dos resultados em relação ao balanço original e verificação do balanço resultante de energia em termos de poder calorífico superior. Dois conjuntos de pesos foram aplicados, um arbitrado de acordo com o conhecimento prévio da qualidade do sistema de medição de cada um dos pontos, outro baseado no inverso da variância dos volumes diários apurados no período. Ambos apresentaram bons resultados e o segundo foi considerado o mais apropriado. Por meio de uma abordagem termodinâmica, foi avaliado o potencial impacto, ao balanço, da condensação de parte da fase gás ao longo do escoamento e a injeção de um condensado de gás natural não estabilizado por uma das fontes. Ambos tendem a impactar o balanço, sendo o resultado esperado um menor volume, massa e energia de fase gás na saída. Outros fatores de considerável impacto na qualidade dos dados e no resultado final da reconciliação são a qualidade da medição de saída do sistema e a representatividade da composição do gás neste ponto. O inventário é calculado a partir de uma regressão que se baseia em um regime permanente de escoamento, o que pode apresentar maior desvio quando fortes transientes estão ocorrendo no último dia do mês, porém a variação de inventário ao longo do mês possui baixo impacto no balanço. Concluiu-se que a reconciliação volumétrica é a mais apropriada para este sistema, pois os dados reconciliados levam os balanços mássicos e de energia em termos de poder calorífico, ambos na fase gás, para dentro do perfil esperado de comportamento. Embora um balanço volumétrico nulo apenas da fase gás não seja por si só o comportamento esperado quando se considera os efeitos descritos, para desenvolver um balanço mais robusto é necessário considerar as frações líquidas presentes no sistema, agregando maior dificuldade na aquisição e qualidade dos dados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Froth recovery measurements have been conducted in both the presence (three-phase froth) and absence (two-phase froth) of particles of different contact angles in a specially modified laboratory flotation column. Increasing the particle hydrophobicity increased the flow rate of particles entering the froth, while the recovery of particles across the froth phase itself also increased for particle contact angles to 63 and at all vertical heights of the froth column. However, a further increase in the contact angle to 69 resulted in lower particle recovery across the froth phase. The reduced froth recovery for particles of 69 contact angle was linked to significant bubble coalescence within the froth phase. The reduced froth recovery occurred uniformly across the entire particle size range, and was, presumably, a result of particle detachment from coalescing bubbles. Water flow rates across the froth phase also varied with particle contact angle. The general trend was a decrease in the concentrate flow rate of water with increasing particle contact angle. An inverse relationship between water flow rate and bubble radius was also observed, possibly allowing prediction of water flow rate from bubble size measurements in the froth. Comparison of the froth structure, defined by bubble size, gas hold-up and bubble layer thickness, for two- and three-phase froths, at the same frother concentration, showed there was a relationship between water flow rate and froth structure. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waves breaking on the seaward rim of a coral reef generate a flow of water from the exposed side of the reef to the sheltered side and/or to either channels through the reef-rim or lower sections of the latter. This wave-generated flow is driven by the water surface gradient resulting from the wave set-up created by the breaking waves. This paper reviews previous approaches to modelling wave-generated flows across coral reefs and discusses the influence of reef morphology and roughness upon these flows. Laboratory measurements upon a two-dimensional horizontal reef platform with a steep reef face provide the basis for extending a previous theoretical analysis for wave set-up on a reef in the absence of a flow [Gourlay, M.R., 1996b. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coastal Engineering 28, 1755] to include the interaction between a unidirectional flow and the wave set-up. The laboratory model results are then used to demonstrate that there are two basic reef-top flow regimes-reef-top control and reef-rim control. Using open channel flow theory, analytical relationships are derived for the reef-top current velocity in terms of the offreef wave conditions, the reef-top water depth and the physical characteristics of the reef-top topography. The wave set-up and wave-generated flow relationships are found to predict experimental values with reasonable accuracy in most cases. The analytical relationships are used to investigate wave-generated flows into a boat harbour channel on Heron Reef in the southern Great Barrier Reef. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As alcohol molecules such as methanol and ethanol have both polar and non-polar groups, their adsorption behavior is governed by the contributions of dispersion interaction (alkyl group) and hydrogen bonding (OH group). In this paper, the adsorption behavior of alcohol molecules and its effect on transport processes are elucidated. From the total permeability (B-T) of alcohol molecules in activated carbon, an adsorption mechanism is proposed, describing well the experimental data, by taking combination effects of clustering, entering micropores, layering and pore filling processes. Unlike the case of non-polar compounds, it was found that at low pressures there are two rises in the BT of alcohol molecules in activated carbon. The first rise is due to the major contribution of surface diffusion to the transport (which is the case of non-polar molecules) and the second one may be associated with cluster formation at the edge of micropores and entering micropores when the clusters are sufficiently large enough to induce a dispersive energy. In addition the clusters formed may enhance surface diffusion at low pressures and hinder gas phase diffusion and flow in meso/macropores. (c) 2006 Elsevier Ltd. All fights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental investigations and computer modelling studies have been made on the refrigerant-water counterflow condenser section of a small air to water heat pump. The main object of the investigation was a comparative study between the computer modelling predictions and the experimental observations for a range of operating conditions but other characteristics of a counterflow heat exchanger are also discussed. The counterflow condenser consisted of 15 metres of a thermally coupled pair of copper pipes, one containing the R12 working fluid and the other water flowing in the opposite direction. This condenser was mounted horizontally and folded into 0.5 metre straight sections. Thermocouples were inserted in both pipes at one metre intervals and transducers for pressure and flow measurement were also included. Data acquisition, storage and analysis was carried out by a micro-computer suitably interfaced with the transducers and thermocouples. Many sets of readings were taken under a variety of conditions, with air temperature ranging from 18 to 26 degrees Celsius, water inlet from 13.5 to 21.7 degrees, R12 inlet temperature from 61.2 to 81.7 degrees and water mass flow rate from 6.7 to 32.9 grammes per second. A Fortran computer model of the condenser (originally prepared by Carrington[1]) has been modified to match the information available from experimental work. This program uses iterative segmental integration over the desuperheating, mixed phase and subcooled regions for the R12 working fluid, the water always being in the liquid phase. Methods of estimating the inlet and exit fluid conditions from the available experimental data have been developed for application to the model. Temperature profiles and other parameters have been predicted and compared with experimental values for the condenser for a range of evaporator conditions and have shown that the model gives a satisfactory prediction of the physical behaviour of a simple counterflow heat exchanger in both single phase and two phase regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis describes experimental work on the possibility of using deflection baffles in conventional distillation trays as flow straightening devices, with the view of enhancing tray efficiency. The mode of operation is based on deflecting part of the liquid momentum from the centre of the tray to the segment regions in order to drive stagnating liquid at the edges forward. The first part of the work was a detailed investigation into the two-phase flow patterns produced on a conventional sieve tray having 1 mm hole size perforations. The data provide a check on some earlier work and extend the range of the existing databank, particularly to conditions more typical of industrial operation. A critical survey of data collected on trays with different hole sizes (Hine, 1990; Chambers, 1993; Fenwick, 1996; this work) showed that the hole diameter has a significant influence on the flow regime, the size of the stagnant regions and the hydraulic and mass transfer performance. Five modified tray topologies were created with different configurations of baffles and tested extensively in the 2.44 m diameter air-water pilot distillation simulator for their efficacy in achieving uniform flow across the tray and for their impact on tray loading capacity and mass transfer efficiency. Special attention was given to the calibration of the over 100 temperature probes used in measuring the water temperature across the tray on which the heat and mass transfer analogy is based. In addition to normal tray capacity experiments, higher weir load experiments were conducted using a 'half-tray' mode in order to extend the range of data to conditions more typical of industrial operation. The modified trays show superior flow characteristics compared to the conventional tray in terms of the ability to replenish the zones of exceptionally low temperatures and high residence times at the edges of the tray, to lower the bulk liquid gradient and to achieve a more uniform flow across the tray. These superior flow abilities, however, tend to diminish with increasing weir load because of the increasing tendency for the liquid to jump over the barriers instead of flowing over them. The modified tray topologies showed no tendency to cause undue limitation to tray loading capacity. Although the improvement in the efficiency of a single tray over that of the conventional tray was moderate and in some cases marginal, the multiplier effect in a multiple tray column situation would be significant (Porter et al., 1972). These results are in good agreement with an associated CFD studies (Fischer, 1999) carried out by partners in the Advanced Studies in Distillation consortium. It is concluded that deflection baffles can be used in a conventional distillation sieve tray to achieve better liquid flow distribution and obtain enhanced mass transfer efficiency, without undermining the tray loading capacity. Unlike any other controlled-flow tray whose mechanical complexity impose stringent manufacturing and installation tolerances, the baffled-tray models are simple to design, manufacture and install and thus provide an economic method of retrofitting badly performing sieve trays both in terms of downtime and fabrication. NOTE APPENDICES 2-5 ARE ON A SEPARATE FLOPPY DISK ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of the work is the implementation of a low temperature reforming (LT reforming) unit downstream the Haloclean pyrolyser in order to enhance the heating value of the pyrolysis gas. Outside the focus of this work was to gain a synthesis gas quality for further use. Temperatures between 400 °C and 500 °C were applied. A commercial pre-reforming catalyst on a nickel basis from Südchemie was chosen for LT reforming. As biogenic feedstock wheat straw has been used. Pyrolysis of wheat straw at 450 °C by means of Haloclean pyrolysis leads to 28% of char, 50% of condensate and 22% of gas. The condensate separates in a water phase and an organic phase. The organic phase is liquid, but contains viscous compounds. These compounds could underlay aging and could lead to solid tars which can cause post processing problems. Therefore, the implementation of a catalytic reformer is not only of interest from an energetic point of view, it is generally interesting for tar conversion purposes after pyrolysis applications. By using a fixed bed reforming unit at 450–490 °C and space velocities about 3000 l/h the pyrolysis gas volume flow could be increased to about 58%. This corresponds to a decrease of the yields of condensates by means of catalysis up to 17%, the yield of char remains unchanged, since pyrolysis conditions are the same. The heating value in the pyrolysis gas could be increased by the factor of 1.64. Hydrogen concentrations up to 14% could be realised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earlier investigations (Cartland Glover et al., 2004) into the use of computational fluid dynamics (CFD) for the modelling of gas-liquid and gas-liquid-solid flow allowed a simple biochemical reaction model to be implemented. A single plane mesh was used to represent the transport and reaction of molasses, the mould Aspergillus niger and citric acid in a bubble column with a height to diameter aspect ratio of 20:1. Two specific growth rates were used to examine the impact that biomass growth had on the local solids concentration and the effect this had on the local hydrodynamics of the bubble column.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfur compounds emissions have been, on the late years, subject to more severe environmental laws due to its impact on the environment (causing the acid rain phenomena) and on human health. It has also been object of much attention from the refiners worldwide due to its relationship with equipment’s life, which is decreased by corrosion, and also with products’ quality, as the later may have its color, smell and stability altered by the presence of such compounds. Sulfur removal can be carried out by hydrotreating (HDT) which is a catalytic process. Catalysts for HDS are traditionally based on Co(Ni)-Mo(W)/Al2O3. However, in face of the increased contaminants’ content on crude oil, and stricter legislation on emissions, the development of new, more active and efficient catalysts is pressing. Carbides of refractory material have been identified as potential materials for this use. The addition of a second metal to carbides may enhance catalytic activities by increasing the density of active sites. In the present thesis Mo2C with Co addition was produced in a fixed bed reactor via gas-solid reaction of CH4 (5%) and H2(95%) with a precursor made of a mix of ammonium heptamolybdate [(NH4)6[Mo7O24].4H2O] and cobalt nitrate[Co(NO3)2.6H2O] at stoichiometric amounts. Precursors’ where analyzed by XRF, XRD, SEM and TG/DTA. Carboreduction reactions were carried out at 700 and 750°C with two cobalt compositions (2,5 and 5%). Reaction’s products were characterized by XRF, XRD, SEM, TOC, BET and laser granulometry. It was possible to obtain Mo2C with 2,5 and 5% cobalt addition as a single phase at 750°C with nanoscale crystallite sizes. At 700°C, however, both MoO2 and Mo2C phases were found by XRD. No Co containing phases were found by XRD. XRF, however, confirmed the intended Co content added. SEM images confirmed XRD data. The increase on Co content promoted a more severe agglomeration of the produced powder. The same effect was noted when the reaction temperature was increased. The powder synthesized at 750°C with 2,5% Co addition TOC analysis indicated the complete conversion from oxide material to carbide, with a 8,9% free carbon production. The powder produced at this temperature with 5% Co addition was only partially converted (86%)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of flow through the prediction of differential pressure is widely used in industrial day-to-day, this happens mainly due to the fact that it is used for various types of fluids, such as gas flow and liquid with viscosity distinct even flow of fluids with particles in suspension. The suitability of this equipment for measuring mass flow in two-phase flow is of paramount importance for technological development and reliability of results. When it comes to two-phase flow the relationship between the fluids and their interactions are of paramount importance in predicting the flow. In this paper, we propose the use of concentric orifice plate used in small diameter pipes of 25.4 mm order where a two-phase flow flows between water-air. The measurement of single-phase flow was made with the use of data in NBR 5167-1 which was used to Stolz equation for measuring discharge coefficient. In the two-phase flow was used two correlations widely used in the prognosis of mass flow, the pattern of Zhang (1992) and the model of Chisholm (1967), to the homogeneous flow model. It was observed that the behavior found in Zhang model are consistent more realistic way the mass flow of two-phase flow, since the model Chisholm extrapolate the parameters for the downstream pressure P2, the orifice plate, and the rated discharge coefficient. The use of the change in pressure drop P1-P2 and discharge coefficient, led to a better convergence of the values obtained for the two-phase air-water stream.