947 resultados para Two-phase experiments
Resumo:
Stepped cascades and spillways have been used for more than 3,500 years. The recent regain of interest for the stepped chute design is associated with the introduction of new construction techniques, the development of new design techniques and newer applications. Stepped chute flows are characterised by significant free-surface aeration that cannot be neglected. Two-phase flow measurements were conducted in a large-size model (h =0.10 m, α = 22o). Experimental observations demonstrate the existence of a transition flow regime for a relatively wide range of flow rates. Detailed air-water flow measurements were conducted for both skimming flows and transition flows. Skimming flows exhibit gradual variations of the air-water flow properties, whereas transition flows are characterised by rapid flow redistributions between adjacent steps.
Resumo:
The kinetics of drop penetration were studied by filming single drops of several different fluids (water, PEG200, PEG600, and HPC solutions) as they penetrated into loosely packed beds of glass ballotini, lactose, zinc oxide, and titanium dioxide powders. Measured times ranged from 0.45 to 126 s and depended on the powder particle size,viscosity, surface tensions, and contact angle. The experimental drop penetration times were compared to existing theoretical predictions by M. Denesuk et al. (J. Colloid Interface Sci. 158, 114, 1993) and S. Middleman (Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, Academic Press, San Diego, 1995) but did not agree. Loosely packed powder beds tend to have a heterogeneous bed structure containing large macrovoids which do not participate in liquid flow but are included implicitly in the existing approach to estimating powder pore size. A new two-phase model was proposed where the total volume of the macrovoids was assumed to be the difference between the bed porosity and the tap porosity. A new parameter, the effective porosity (epsilon)eff, was defined as the tap porosity multiplied by the fraction of pores that terminate at a macrovoid and are effectively blocked pores. The improved drop penetration model was much more successful at estimating the drop penetration time on all powders and the predicted times were generally within an order of magnitude of the experimental results. (C) 2002 Elsevier Science (USA).
Resumo:
Water wetting is a crucial issue in carbon dioxide (CO.) corrosion of multiphase flow pipelines made from mild steel. This study demonstrates the use of a novel benchtop apparatus, a horizontal rotating cylinder, to study the effect of water wetting on CO2 corrosion of mild steel in two-phase flow. The setup is similar to a standard rotating cylinder except for its horizontal orientation and the presence of two phases-typically water and oil. The apparatus has been tested by using mass-transfer measurements and CO2 corrosion measurements in single-phase water flow. CO2 corrosion measurements were subsequently performed using a water/hexane mixture with water cuts varying between 5% and 50%. While the metal surface was primarily hydrophilic under stagnant. conditions, a variety of dynamic water wetting situations was encountered as the water cut and fluid velocity were altered. Threshold velocities were identified at various water cuts when the surface became oil-wet and corrosion stopped.
Resumo:
High concentrations of ammonium ( up to 270 kg N/ha) have been observed in a Vertisol soil below 1 m depth near Warra in south-east Queensland. This study examined the possibility that increased water movement into the subsoil after the removal of native vegetation, and a subsequent increase in periods of waterlogging, could have triggered nitrate ammonification and be responsible for the production of ammonium. Two incubation experiments were conducted to test this hypothesis. The first involved the incubation of repacked cores that had been amended with 30 mg N/kg of 5 atom% N-15 nitrate under low oxygen conditions for a period of 360 days. Over this time period the N-15 enrichment of the exchangeable ammonium fraction was monitored in order to detect any reduction of nitrate to ammonium. The second experiment involved the incubation of soil amended with 30 mg N/ kg of 5 atom% N-15 nitrate under waterlogged and low oxygen conditions for 75 days. During this period the redox potential of the soil was monitored using a field test to determine if reducing conditions would develop in this soil over a period of waterlogging, combined with the monitoring of any nitrate reduction to ammonium. The results of these experiments indicated that a small amount of nitrate ammonification (< 0.1 mg N/ kg) could be observed in the Warra subsoil, but that unless the rate of reduction were to significantly increase with time, this could not account for the accumulation of ammonium observed in the field. The environmental conditions that would make either dissimilatory or abiotic nitrate ammonification favourable were not observed to develop. Consequently, it has been concluded that the observed nitrate ammonification occurred via an assimilatory pathway. Due to the low rate of microbial activity in this subsoil it is considered unlikely that this process was responsible for the subsoil ammonium accumulation at Warra.
Resumo:
1. Two broiler experiments and a layer experiments were conducted on Kunitz trypsin inhibitor (Kti) soybeans (SB) of low trypsin inhibitor (TI) activity to determine their nutritive value when included as mash in least-cost poultry diets. 2. Experiment 1 compared chick performance on the Kti or raw SB using a commercial full-fat SB meal (FFSBM) and a solvent extracted SB meal (SBM) as controls during a 20 d experimental period. Broiler experiment 2 compared Kti and raw SB, non-steamed, or steam-pelleted with and without DL-methionine supplementation added to every treatment containing 170 g SB/kg. For each broiler experiment the levels of each SB were 70, 120 and 170 g/kg with the control birds fed only 170 g SB/kg. 3. The layer experiment, compared steam-pelleted Kti and raw SB against a non-steamed Kti and raw SB each fed at two levels (70 and 110 g/kg) x 30 replicates from 29 weeks of age for 19 weeks in a completely randomised design. Production parameters were measured when diets were formulated to contain minimum required specifications and calculated apparent metabolisable energy (AME). At the completion of each trial, 2 broiler birds from each cage and 5 layer birds per treatment were killed, weighed, and their liver and pancreas weighed. 4. Both broiler experiments indicated that production parameters on the Kti SB treatments were significantly lower (P < 0.05) than on the two commercial control SB treatments. However, the Kti treatments were superior to the raw SB treatments. 5. Pancreas weight increased with increasing inclusion of both raw and Kti SB, suggesting that a TI was causing the depression in performance. The AME of the Kti SB was similar to that of commercial FFSB meal. After steam conditioning, the raw SB meal AME value of 9.5 MJ/kg dry matter (DM) was improved to 14.1 MJ/kg DM by reduced TI activity, but this AME improvement with TI activity reduction, plus the supplementation with DL-methionine on birds fed the raw SB had no effect (P > 0.05) on any parameter evaluated in experiment 2. 6. The layer experiment showed that hens on the Kti SB treatments had significantly greater live weight gain (LWG), egg weight and daily egg mass than birds given raw SB. A reduced food intake (FI) was observed in the Kti treatments but egg mass was generally similar to that on the FFSB control diet, indicating that Kti SB supported excellent egg production at an inclusion of 110 g/kg. The depressed performance observed for broiler chicks suggest that younger birds are more susceptible to the effects of SB TI.
Resumo:
Low temperature during panicle development in rice increases spikelet sterility. This effect is exacerbated by high rates of nitrogen (N) application in the field. Spikelet sterility induced by low temperature and N fertilisation was examined in glasshouse experiments to clarify the mechanisms involved. In two glasshouse experiments, 12-h periods of low (18/13degreesC) and high (28/23degreesC) day/night temperatures were imposed over periods of 5-7 days during panicle development, to determine the effects of low temperature and N fertilisation on spikelet sterility. In one experiment, 50% sunlight was imposed together with low temperature to investigate the additive effects of reduced solar radiation and low temperature. The effect of increased tillering due to N fertilisation was examined by a tiller removal treatment in the same experiment. Pollen grain number and spikelet sterility were recorded at heading and harvest, respectively. Although there was no significant effect of low temperature on spikelet sterility in the absence of applied N, low temperature greatly increased spikelet sterility as a result of a reduction in the number of engorged pollen grains per anther in the presence of applied N. Spikelet sterility was strongly correlated with the number of engorged pollen grains per anther. Low temperature during very early ( late stage of spikelet differentiation-pollen mother cell stage) and peak ( second meiotic division stage-early stage of extine formation) microspore development caused a severe reduction in engorged pollen production mainly as a result of reduced total pollen production. Unlike low temperature, the effect of shading was rather small. The increased tillering due to application of high rates of N, increased both spikelet number per plant and spikelet sterility under low temperature conditions. The removal of tillers as they appeared reduced the number of total spikelets per plant and maintained a large number of engorged pollen grains per anther which, in turn, reduced spikelet sterility. The number of engorged pollen grains per anther determined the numbers of intercepted and germinated pollen grains on the stigma. It is concluded that N increased tillering and spikelet number per plant and this, in turn, reduced the number of engorged pollen grains per anther, leading into increased spikelet sterility under low temperature condition.
Resumo:
Atualmente, tem-se difundido a aplicação de inoculante no sulco de semeadura na cultura da soja, mas há poucas informações que dão suporte a essa prática e comprovam sua eficiência em diferentes ambientes manejados sob plantio direto. Este trabalho teve como objetivo avaliar a viabilidade da aplicação de inoculantes na cultura da soja, via semente e sulco de semeadura, em solo já cultivado ou não com soja. Foram realizados dois experimentos em campo a partir de dezembro de 2004 em Latossolo Vermelho-Amarelo, seguindo o mesmo método e tratamentos, porém em dois locais distintos, com ou sem cultivo anterior de soja. Foram testados oito tratamentos: (1) inoculação via semente (inoculante + fungicida + micronutriente); (2) sem inoculação (fungicida + micronutriente); (3) testemunha (semente pura, sem tratamento); (4) aplicação no sulco-dose 1 (dose do inoculante recomendada no sulco); (5) aplicação no sulco-dose 2 (duas vezes a dose recomendada no sulco); (6) aplicação no sulco-dose 3 (três vezes a dose recomendada no sulco); (7) sulco-dose 1 + inoculação via semente; e (8) adubação com N (200 kg ha-1 N). Foram avaliados massa de matéria seca de nódulos e número de nódulos totais e nódulos viáveis e não-viáveis aos 30 e 75 dias após emergência. A melhor nodulação foi obtida com aplicação de inoculante + fungicida + micronutriente via semente no solo ainda não cultivado. No solo previamente cultivado com soja, destacaram-se os tratamentos uma e duas vezes a dose do inoculante no sulco. Menores valores de massa seca de nódulos na soja foram obtidos no tratamento com adubação mineral. A aplicação via sulco do inoculante mostrou-se uma prática viável, em razão da semelhança dos resultados obtidos com a aplicação tradicional via semente.
Resumo:
No presente trabalho, foram estudados os dados de equilíbrio de fases dos sistemas aquosos bifásicos formados por polietilenoglicol (1500, 3350 e 6000) + fosfato monobásico e dibásico de sódio (pH 7) + água. Estudou-se o efeito da variação da temperatura (10, 25 e 40°C) bem como da massa molar sobre os dados de equilíbrio. Para o PEG 3350 observou-se um aumento da área bifásica com diminuição da temperatura, mostrando que a formação do sistema aquoso bifásico é exotérmico. Para o PEG 1500 e 6000 houve aumento da área bifásica à 10 e 40°C se comparado à temperatura de 25°C. Em todas as temperaturas em estudo, o aumento da massa molar contribuiu para o aumento da área bifásica. Fato este que foi explicado pelo aumento do caráter hidrofóbico com o aumento da massa do polietilenoglicol.
Resumo:
The biological nitrogen fixation is an alternative to supply the nitrogen needed for maize. The objective of this study was to evaluate the development and yield of maize in response to inoculation with Azospirillum associated with nitrogen fertilization. We conducted two field experiments in the summer harvest, the first in the 2000/2001 crop year in the region of Marechal Cândido Rondon, under conventional tillage, and second in the 2002/2003 agricultural year in the region of Cascavel, under no tillage. The experimental design in both experiments was a randomized complete block, with four replications, 2x2x2 factorial, with two levels of nitrogen at sowing (zero and 20 kg ha-1), two levels of inoculum (zero and 200 g ha-1) and two levels of nitrogen in topdressing (zero and 100 kg ha-1). There was evaluated the height of ear insertion, total plant height, leaf N content, shoot dry biomass and grain yield. The height of ear insertion and total plant height were not influenced by the factors under study. Nitrogen fertilization at sowing increased the leaf N content, causing the opposite effect when combined with inoculation. Inoculation with Azospirillum in the absence of nitrogen, provide productivity increases of 15.4% and 7.4% for 2000/2001 and 2002/2003 crops, respectively. The inoculation provided productivity similar to that obtained with 100 kg ha-1 in topdressing in crop 2000/2001, while in association with the topdressing, reduced productivity and shoot dry biomass in crop 2002/2003.
Resumo:
This work reports on the synthesis of chromium (III, IV) oxides films by KrF laser-assisted CVD. Films were deposited onto sapphire substrates at room temperature by the photodissociation of Cr(CO)(6) in dynamic atmospheres containing oxygen and argon. A study of the processing parameters has shown that partial pressure ratio Of O-2 to Cr(CO)(6) and laser fluence are the prominent parameters that have to be accurately controlled in order to co-deposit both the crystalline oxide phases. Films consistent with such a two-phase system were synthesised for a laser fluence of 75 mJ cm(-2) and a partial pressure ratio of about 1. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A mathematical model is proposed for the evolution of temperature, chemical composition, and energy release in bubbles, clouds, and emulsion phase during combustion of gaseous premixtures of air and propane in a bubbling fluidized bed. The analysis begins as the bubbles are formed at the orifices of the distributor, until they explode inside the bed or emerge at the free surface of the bed. The model also considers the freeboard region of the fluidized bed until the propane is thoroughly burned. It is essentially built upon the quasi-global mechanism of Hautman et al. (1981) and the mass and heat transfer equations from the two-phase model of Davidson and Harrison (1963). The focus is not on a new modeling approach, but on combining the classical models of the kinetics and other diffusional aspects to obtain a better insight into the events occurring inside a fluidized bed reactor. Experimental data are obtained to validate the model by testing the combustion of commercial propane, in a laboratory-scale fluidized bed, using four sand particle sizes: 400–500, 315–400, 250–315, and 200–250 µm. The mole fractions of CO2, CO, and O2 in the flue gases and the temperature of the fluidized bed are measured and compared with the numerical results.
Resumo:
In two distinct experiments, immature S. mansoni worms (LE strain, Belo Horizonte, Brazil), aged 20 days, obtained from the portal system of white outbred mice, were irradiated with 14 and 4 Krad, respectively. Afterwards, the worms were directly inoculated into the portal vein of normal mice. Inoculation was performed with 20 irradiated worms per animal. Fifty days after inoculation, the mice that received 4 and 14 Krad-irradiated worms and their respective controls were infected with S. mansoni cercariae (LE strain), by transcutaneous route. Twenty days after this challenge infection, the animals were sacrificed and perfused for mature irradiated (90-day-old) and immature (20-day-old) worm counts. Analysis of the results showed that statistically significant protection against cercariae occurred in both groups with irradiated worms.
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.