436 resultados para Trimetilación Histona H3
Resumo:
In addition to a previously described histone (H)-encoding H4 gene [Meier et al., Nucleic Acids Res. 17 (1989) 795], the mouse genomic DNA clone 53 contains two H3 genes, one functional and one partially deleted H2A gene, and one H2B gene. Clone 53 overlaps for 3 kb with MH143, another previously isolated mouse H-encoding clone [Yang et al., J. Biol. Chem. 262 (1987) 17118-17125], thus defining a 32-kb region of mouse chromosome 13 with a total of seven H-encoding genes. We have determined the nucleotide sequences and transcription start points of two genes coding for the H2A.1 and H3.2 proteins.
Resumo:
The mature 3' ends of histone mRNAs are formed by endonucleolytic cleavage of longer precursor transcripts. This process occurs in the nucleus and can be regarded as the equivalent of the polyadenylation reaction involved in 3′-end-generation of all other mRNAs. A sea urchin H3 gene that failed to be properly processed in the Xenopus oocyte system proved particularly useful, because it allowed the identification of a processing component from sea urchins by a complementation assay. Nuclear extracts prepared from cells under various growth conditions have helped to reveal proliferation-dependent changes in the efficiency of histone RNA 3′ processing. RNA substrates for in vitro processing are best prepared by runoff transcription of specific DNA templates with bacterial or phage RNA polymerases. For this purpose, a restriction fragment containing the 3′-terminal region of a histone gene and including the conserved palindrome and spacer motifs is cloned into a polylinker sequence downstream of a strong promoter.
Resumo:
The corepressor complex Tup1-Ssn6 regulates many classes of genes in yeast including cell type specific, glucose repressible, and DNA damage inducible. Tup1 and Ssn6 are recruited to target promoters through their interactions with specific DNA binding proteins such as α2, Mig1, and Crt1. Most promoters that are repressed by this corepressor complex exhibit a high degree of nucleosomal organization. This chromatin domain occludes transcription factor access to the promoter element resulting in gene repression. Previous work indicated that Tup1 interacts with underacetylated isoforms of H3 and H4, and that mutation of these histones synergistically compromises repression. These studies predict that Tup1-hypoacetyalted histone interaction is important to the repression mechanism, and in vivo hyperacetylation might compromise the corepressors ability to repress target genes. ^ One way to alter histone acetylation levels in vivo is to alter the balance between histone acetyltransferases and histone deacetylases. To date five histone deacetylases (HDACs) have been identified in yeast Rpd3, Hos1, Hos2, Hos3 and Hda1. Deletion of single or double HDAC genes had little to no effect on Tup1-Ssn6 repression, but simultaneous deletion of three specific activities Rpd3, Hos1, and Hos2 abolished repression in vivo. Promoter regions of Tup1-Ssn6 target genes in these triple deacetylase mutant cells are dramatically hyperacetylated in both H3 and H4. Examination of bulk histone acetylation levels showed that this specific HDAC triple mutant combination (rpd3 hos1 hos2) caused a dramatic and concomitant hyperacetylation of both H3 and H4. The loss of repression in the rpd3 hos1 hos2 cells, but not in other mutants, is consistent with previous observations, which indicate that histones provide redundant functions in the repression mechanism and that high levels of acetylation are required to prevent Tup1 binding. Investigation into a potential direct interaction between the Tup1-Ssn6 corepressor complex and one or more HDAC activities showed that both Rpd3 and Hos2 interact with the corepressor complex in vivo. These findings indicate that Tup1-Ssn6 repression involves the recruitment of histone deacetylase activities to target promoters, where they locally deacetylate histone residues promoting Tup1-histone tail interaction to initiate and/or maintain the repressed state. ^
Resumo:
von Georg Halpern
Resumo:
autorisierte Uebertragung nach der Ausg. des Prof. Dr. David Kaufmann von Bertha Pappenheim
Resumo:
von Moritz Steinschneider
Resumo:
gehalten von H. Joël ...
Resumo:
von Samuel Holdheim
Resumo:
gehalten von Ad. Jellinek
Resumo:
A phosphorylation balance governed by Ipl1 Aurora kinase and the Glc7 phosphatase is essential for normal chromosome segregation in S. cerevisiae . Deletion of SET1, a histone K4 methyltransferase, suppresses the temperature sensitive phenotype of ipl1-2, and loss the catalytic activity of Set1 is important for this suppression. SET1 deletion also suppresses chromosome loss in ipl1-2 cells. Deletion of other Set1 complex components suppresses the temperature sensitivity of ipl1-2 as well. In contrast, SET1 deletion is synthetic lethal combined with glc7-127. Strikingly, these effects are independent of previously defined functions for Set1 in transcription initiation and histone H3 methylation. I find that Set1 methylates conserved lysines in a kinetochore protein, Dam1, a key mitotic substrate of Ipl1/Glc7. Biochemical and genetic experiments indicate that Dam1 methylation inhibits Ipl1-mediated phosphorylation of flanking serines. My studies demonstrate that Set1 has important, unexpected functions in mitosis through modulating the phosphorylation balance regulated by Ipl1/Glc7. Moreover, my findings suggest that antagonism between lysine methylation and serine phosphorylation is a fundamental mechanism for controlling protein function. ^
Resumo:
Cancer is the most devastating disease that has tremendous impacts on public health. Many efforts have been devoted to fighting cancer through either translational or basic researches for years. Nowadays, it emerges the importance to converge these two research directions and complement to each other for battling with cancer. Thus, our study aims at both translational and basic research directions. The first goal of our study is focus on translational research to search for new agents targeting prevention and therapy of advanced prostate cancer. Hormone refractory prostate cancer is incurable and lethal. Androgen receptor (AR) mediates androgen's effect not only on the tumor initiation but also plays the major role in the relapse transition of prostate cancer. Here we demonstrate that emodin, a natural compound, can directly target AR to suppress prostate cancer cell growth in vitro and prolong the survival of C3(1)/SV40 transgenic mice in vivo. Emodin treatment resulted in repressing androgen-dependent transactivation of AR by inhibiting AR nuclear translocation. Emodin decreased the association of AR and heat shock protein 90 and increased the association of AR and MDM2, which in turn, induces AR degradation through a proteasome-mediated pathway in a ligand independent manner. Our work indicates a new mechanism for the emodin-mediated anticancer effect and justifies further investigation of emodin as a therapeutic and preventive agent for prostate cancer. The second goal of our study is try to elucidate the fundamental tumor biology of cancer progression then provide the rationale to develop more efficient therapeutic strategy. Enhancer of zeste homologue 2 (EZH2) plays an important role in many biological processes through its intrinsic methyltransferase activity to trimethylate lysine 27 in histone H3. Although overexpression of EZH2 has been shown to be involved in cancer progression, the detailed mechanisms are elusive. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding the binding to its substrate histone H3, resulting in a decrease of lysine 27 trimethylation and derepression of silenced genes, thus promotes cell proliferation and tumorigenicity. Our results also show that histone methylation is not permanent but regulated in a dynamic manner and that the Akt signaling pathway is involved in the regulation of this epigenetic modification through phosphorylation of EZH2, thus contributing to oncogenic processes. ^
Resumo:
In response to tumor hypoxia, specific genes that promote angiogenesis, proliferation, and survival are induced. Globally, I find that hypoxia induces a mixed pattern of histone modifications that are typically associated with either transcriptional activation or repression. Furthermore, I find that selective activation of hypoxia-inducible genes occurs simultaneously with widespread repression of transcription. I analyzed histone modifications at the core promoters of hypoxia-repressed and -activated genes and find that distinct patterns of histone modifications correlate with transcriptional activity. Additionally, I discovered that trimethylated H3-K4, a modification generally associated with transcriptional activation, is induced at both hypoxia-activated and repressed genes, suggesting a novel pattern of histone modifications induced during hypoxia. ^ In order to determine the mechanism of hypoxia-induced widespread repression of transcription, I focused my studies on negative cofactor 2 (NC2). Previously, we found that hypoxia-induced repression of the alpha-fetoprotein (AFP) gene occurs during preinitiation complex (PIC) assembly, and I find that NC2, an inhibitor of PIC assembly, is induced during hypoxia. Moreover, I find that the beta subunit of NC2 is essential for hypoxia-mediated repression of AFP, as well as the widespread repression of transcription observed during hypoxia. Previous data in Drosophila and S. cerevisiae indicate that NC2 functions as either an activator or a repressor of transcription. The mechanism of NC2-mediated activation remains unclear; although, Drosophila NC2 function correlates with specific core promoter elements. I tested if NC2 activates transcription in mammalian cells using this core promoter-specific model as a guide. Utilizing site-specific mutagenesis, I find that NC2 function in mammalian cells is not dependent upon specific core promoter elements; however, I do find that mammalian NC2 does function in a gene-specific manner as either an activator or repressor of transcription during hypoxia. Furthermore, I find that binding of the alpha subunit of NC2 specifically correlates with NC2-mediated transcriptional activation. NC2α and NC2β are both required for NC2-mediated transcriptional activation; whereas, NC2β alone is required for hypoxia-induced transcriptional repression. Together, these data indicate that hypoxia mediates changes in gene expression through both chromatin modifications and NC2 function. ^
Resumo:
5-aza-2'-deoxycytidine (DAC) is a cytidine analogue that strongly inhibits DNA methylation, and was recently approved for the treatment of myelodysplastic syndromes (MDS). To maximize clinical results with DAC, we investigated its use as an anti-cancer drug. We also investigated mechanisms of resistance to DAC in vitro in cancer cell lines and in vivo in MDS patients after relapse. We found DAC sensitized cells to the effect of 1-β-D-Arabinofuranosylcytosine (Ara-C). The combination of DAC and Ara-C or Ara-C following DAC showed additive or synergistic effects on cell death in four human leukemia cell lines in vitro, but antagonism in terms of global methylation. RIL gene activation and H3 lys-9 acetylation of short interspersed elements (Alu). One possible explanation is that hypomethylated cells are sensitized to cell killing by Ara-C. Turning to resistance, we found that the IC50 of DAC differed 1000 fold among and was correlated with the dose of DAC that induced peak hypomethylation of long interspersed nuclear elements (LINE) (r=0.94, P<0.001), but not with LINE methylation at baseline (r=0.05, P=0.97). Sensitivity to DAC did not significantly correlate with sensitivity to another hypomethylating agent 5-azacytidine (AZA) (r=0.44, P=0.11). The cell lines most resistant to DAC had low dCK, hENT1, and hENT2 transporters and high cytosine deaminase (CDA). In an HL60 leukemia cell line, resistance to DAC could be rapidly induced by drug exposure, and was related to a switch from monoallelic to biallelic mutation of dCK or a loss of wild type DCK allele. Furthermore, we showed that DAC induced DNA breaks evidenced by histone H2AX phosphorylation and increased homologous recombination rates 7-10 folds. Finally, we found there were no dCK mutations in MDS patients after relapse. Cytogenetics showed that three of the patients acquired new abnormalities at relapse. These data suggest that in vitro spontaneous and acquired resistance to DAC can be explained by insufficient incorporation of drug into DNA. In vivo resistance to DAC is likely due to methylation-independent pathways such as chromosome changes. The lack of cross resistance between DAC and AZA is of potential clinical relevance, as is the combination of DAC and Ara-C. ^
Resumo:
In this dissertation, I identify two molecular mechanisms by which transcription factors cooperate with their co-regulators to mediate gene regulation. In the first part, I demonstrate that p53 directly recruits LSD1, a histone demethylase, to AFP chromatin to demethylate methylated H3K4 and actively mediate transcription repression. Loss of p53 and LSD1 interaction at chromatin leads to derepression of AFP in hepatic cells. In the second part, I reveal that Trim24 functions as an important co-activator in ERα-mediated gene activation in response to estrogen stimulation. Trim24 is recruited by ligand-bound ERα to chromatin and stabilizes ERα-chromatin interactions by binding to histone H3 via its PHD finger, which preferentially recognizes unmethylated H3K4. ^
Resumo:
Transcription factors must be able to access their DNA binding sites to either activate or repress transcription. However, DNA wrapping and compaction into chromatin occludes most binding sites from ready access by proteins. Pioneer transcription factors are capable of binding their DNA elements within a condensed chromatin context and then reducing the level of nucleosome occupancy so that the chromatin structure is more accessible. This altered accessibility increases the probability of other transcription factors binding to their own DNA binding elements. My hypothesis is that Foxa1, a ‘pioneer’ transcription factor, activates alpha-fetoprotein (AFP) expression by binding DNA in a chromatinized environment, reducing the nucleosome occupancy and facilitating binding of additional transcription factors.^ Using retinoic-acid differentiated mouse embryonic stem cells, we illustrate a mechanism for activation of the tumor marker AFP by the pioneer transcription factor Foxa1 and TGF-β downstream effector transcription factors Smad2 and Smad4. In differentiating embryonic stem cells, binding of the Foxa1 forkhead box transcription factor to chromatin reduces nucleosome occupancy and levels of linker histone H1 at the AFP distal promoter. The more accessible DNA is subsequently bound by the Smad2 and Smad4 transcription factors, concurrent with activation of transcription. Chromatin immunoprecipitation analyses combined with siRNA-mediated knockdown indicate that Smad protein binding and the reduction of nucleosome occupancy at the AFP distal promoter is dependent on Foxa1. In addition to facilitating transcription factor binding, Foxa1 is also associated with histone modifications related to active gene expression. Acetylation of lysine 9 on histone H3, a mark that is associated active transcription, is dependent on Foxa1, while methylation of H3K4, also associated with active transcription, is independent of Foxa1. I propose that Foxa1 potentiates a region of chromatin to respond to Smad proteins, leading to active expression of AFP.^ These studies demonstrate one mechanism whereby a transcription factor can alter the accessibility of additional transcription factors to chromatin, by altering nucleosome positions. Specifically, Foxa1 exposes DNA so that Smad4 can bind to its regulatory element and activate transcription of the tumor-marker gene AFP.^