999 resultados para Transport theory
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.
Resumo:
In his study of the 'time of arrival' problem in the nonrelativistic quantum mechanics of a single particle, Allcock [1] noted that the direction of the probability flux vector is not necessarily the same as that of the mean momentum of a wave packet, even when the packet is composed entirely of plane waves with a common direction of momentum. Packets can be constructed, for example for a particle moving under a constant force, in which probability flows for a finite time in the opposite direction to the momentum. A similar phenomenon occurs for the Dirac electron. The maximum amount of probabilitiy backflow which can occur over a given time interval can be calculated in each case.
Resumo:
A multisegment percolation system (MSPS) consisting of 25 individual collection wells was constructed to study the effects of localised soil heterogeneities on the transport of solutes in the vadose zone. In particular, this paper discusses the transport of water and nutrients (NO3-, Cl-, PO43-) through structurally stable, free-draining agricultural soil from Victoria, Australia. A solution of nutrients was irrigated onto the surface of a large undisturbed soil core over a 12-h period. This was followed by a continuous irrigation of distilled water at a fate which did not cause pending for a further 18 days. During this time, the volume of leachate and the concentration of nutrients in the leachate of each well were measured. Very significant variation in drainage patterns across a small spatial scale was observed. Leaching of nitrate-nitrogen and chloride from the core occurred two days after initial application. However, less than 1% of the total applied phosphate-phosphorus leached from the soil during the 18-day experiment, indicating strong adsorption. Our experiments indicate considerable heterogeneity in water flow patterns and solute leaching on a small spatial scale. These results have significant ramifications for modelling solute transport and predicting nutrient loadings on a larger scale.
Resumo:
The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We consider the effect of quantum spin fluctuations on the ground-state properties of the Heisenberg antiferromagnet on an anisotropic triangular lattice using linear spin-wave (LSW) theory. This model should describe the magnetic properties of the insulating phase of the kappa-(BEDT-TTF)(2)X family of superconducting molecular crystals. The ground-state energy, the staggered magnetization, magnon excitation spectra, and spin-wave velocities are computed as functions of the ratio of the antiferromagnetic exchange between the second and first neighbours, J(2)/J(1). We find that near J(2)/J(1) = 0.5, i.e., in the region where the classical spin configuration changes from a Neel-ordered phase to a spiral phase, the staggered magnetization vanishes, suggesting the possibility of a quantum disordered state. in this region, the quantum correction to the magnetization is large but finite. This is in contrast to the case for the frustrated Heisenberg model on a square lattice, for which the quantum correction diverges logarithmically at the transition from the Neel to the collinear phase. For large J(2)/J(1), the model becomes a set of chains with frustrated interchain coupling. For J(2) > 4J(1), the quantum correction to the magnetization, within LSW theory, becomes comparable to the classical magnetization, suggesting the possibility of a quantum disordered state. We show that, in this regime, the quantum fluctuations are much larger than for a set of weakly coupled chains with non-frustrated interchain coupling.
Resumo:
Modulational instability in optical Bragg gratings with a quadratic nonlinearity is studied. The electric field in such structures consists of forward and backward propagating components at the fundamental frequency and its second harmonic. Analytic continuous wave (CW) solutions are obtained, and the intricate complexity of their stability, due to the large number of equations and number of free parameters, is revealed. The stability boundaries are rich in structures and often cannot be described by a simple relationship. In most cases, the CW solutions are unstable. However, stable regions are found in the nonlinear Schrodinger equation limit, and also when the grating strength for the second harmonic is stronger than that of the first harmonic. Stable CW solutions usually require a low intensity. The analysis is confirmed by directly simulating the governing equations. The stable regions found have possible applications in second-harmonic generation and dark solitons, while the unstable regions maybe useful in the generation of ultrafast pulse trains at relatively low intensities. [S1063-651X(99)03005-6].
Resumo:
We use the finite element method to solve reactive mass transport problems in fluid-saturated porous media. In particular, we discuss the mathematical expression of the chemical reaction terms involved in the mass transport equations for an isothermal, non-equilibrium chemical reaction. It has turned out that the Arrhenius law in chemistry is a good mathematical expression for such non-equilibrium chemical reactions especially from the computational point of view. Using the finite element method and the Arrhenius law, we investigate the distributions of PH (i.e. the concentration of H+) and the relevant reactive species in a groundwater system. Although the main focus of this study is on the contaminant transport problems in groundwater systems, the related numerical techniques and principles are equally applicable to the orebody formation problems in the geosciences. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The physical nonequilibrium of solute concentration resulting from preferential now of soil water has often led to models where the soil is partitioned into two regions: preferential flow paths, where solute transport occurs mainly by advection, and the remaining region, where significant solute transport occurs through diffusive exchange with the flow paths. These two-region models commonly ignore concentration gradients within the regions. Our objective was to develop a simple model to assess the influence of concentration gradients on solute transport and to compare model results with experiments conducted on structured materials. The model calculates the distribution of solutes in a single spherical aggregate surrounded by preferential now paths and subjected to alternating boundary conditions representing either an exchange of solutes between the two regions (a wet period) or no exchange but redistribution of solutes within the aggregate (a dry period). The key parameter in the model is the aggregate radius, which defines the diffusive time scales. We conducted intermittent leaching experiments on a column of packed porous spheres and on a large (300 mm long by 216 mm diameter) undisturbed field soil core to test the validity of the model and its application to field soils. Alternating wet and dry periods enhanced leaching by up to 20% for this soil, which was consistent with the model's prediction, given a fitted equivalent aggregate radius of 1.8 cm, If similar results are obtained for other soils, use of alternating wet and dry periods could improve management of solutes, for example in salinity control and in soil remediation.
Resumo:
CXTANNEAL is a program for analysing contaminant transport in soils. The code, written in Fortran 77, is a modified version of CXTFIT, a commonly used package for estimating solute transport parameters in soils. The improvement of the present code is that it includes simulated annealing as the optimization technique for curve fitting. Tests with hypothetical data show that CXTANNEAL performs better than the original code in searching for optimal parameter estimates. To reduce the computational time, a parallel version of CXTANNEAL (CXTANNEAL_P) was also developed. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper I offer an 'integrating account' of singular causation, where the term 'integrating' refers to the following program for analysing causation. There are two intuitions about causation, both of which face serious counterexamples when used as the basis for an analysis of causation. The 'process' intuition, which says that causes and effects are linked by concrete processes, runs into trouble with cases of misconnections', where an event which serves to prevent another fails to do so on a particular occasion and yet the two events are linked by causal processes. The chance raising intuition, according to which causes raise the chance of their effects, easily accounts for misconnections but faces the problem of chance lowering causes, a problem easily accounted for by the process approach. The integrating program attempts to provide an analysis of singular causation by synthesising the two insights, so as to solve both problems. In this paper I show that extant versions of the integrating program due to Eells, Lewis, and Menzies fail to account for the chance-lowering counterexample. I offer a new diagnosis of the chance lowering case, and use that as a basis for an integrating account of causation which does solve both cases. In doing so, I accept various assumptions of the integrating program, in particular that there are no other problems with these two approaches. As an example of the process account, I focus on the recent CQ theory of Wesley Salmon (1997).
Resumo:
We use a quantum master equation to describe transport in double-dot devices. The coherent dot-to-dot coupling affects the noise spectra strongly. For phonon-assisted tunneling, the calculated current spectra are consistent with those of experiments. The model shows that quantum stochastic theory may he applied to some advantage in mesoscopic electronic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The removal of chemicals in solution, by overland flow from agricultural land has the potential to be a significant source of chemical loss from zero-till and surface mulched farming systems. The objective of this study was to determine the magnitude of solute loss by surface runoff from agricultural systems. Previous experiments have enhanced the understanding of the exchange process, but the initial soil conditions together with the tracer application method in these experiments have meant that in some cases the results have limited applicability to field situations. In this study, two different sets of experiments were carried out to determine the magnitude of solute loss by surface runoff. These experiments entailed the surface application of bromide to (1) field scale plots 18 m long by 2 m wide and (2) repacked soil cores 236 mm in diameter; followed by the application of simulated rainfall in both cases. The most substantial finding of the field experiments was that the quantities of solute in surface runoff varied greatly with soil type and structure (0.07-14.9% of the applied bromide). Also, on some soils, large quantities of tracer were measured in the surface runoff even after several hours of infiltration. The experiments on soil cores showed that soil structure plays an important role in the quantity of chemical that may be transported in the surface runoff. These field results showed that, in certain systems, solute movement by overland flow is an important transport mechanism, which should be considered when budgeting for chemical loss. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
PI kinematic trajectory model is used to investigate potential pathways of dust transport from Australia to New Zealand. Historically, these have been assumed to follow rather direct west-east trajectories spanning 2 to 3 days, often resulting in red snow events in the Southern Alps of New Zealand. However, results from the present study which examined the route taken by air parcels originating in southern Australia during dust storms on 24 and 25 May 1994, indicate that trans-Tasman dust transport trajectories are more diverse than previously thought, and display considerable variation during single events. These mon divergent pathways tie in more closely with aeolian dust sedimentation patterns identified by ocean coring in the Tasman Sea, and may account for the deposition of Australian dust on sub-Antarctic islands located well south of the Australian continent. Copyright 2000 John Wiley Sons, Ltd.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.