952 resultados para Transmission neuromusculaire
Resumo:
Transmission investments are currently needed to meet an increasing electricity demand, to address security of supply concerns, and to reach carbon-emissions targets. A key issue when assessing the benefits from an expanded grid concerns the valuation of the uncertain cash flows that result from the expansion. We propose a valuation model that accommodates both physical and economic uncertainties following the Real Options approach. It combines optimization techniques with Monte Carlo simulation. We illustrate the use of our model in a simplified, two-node grid and assess the decision whether to invest or not in a particular upgrade. The generation mix includes coal-and natural gas-fired stations that operate under carbon constraints. The underlying parameters are estimated from observed market data.
Resumo:
We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure.
Resumo:
We investigate the nonlinear propagation of ultrashort pulses on resonant intersubband transitions in multiple semiconductor quantum wells. It is shown that the nonlinearity rooted from electron-electron interactions destroys the condition giving rise to self-induced transparency. However, by adjusting the area of input pulse, we find the signatures of self-induced transmission due to a full Rabi flopping of the electron density, and this phenomenon can be approximately interpreted by the traditional standard area theorem via defining the effective area of input pulse.
Resumo:
We investigate the characteristics of Gaussian beams reflected and transmitted from a uniaxial crystal slab with an arbitrary orientation of its optical axis. The formulas of the total electric and magnetic fields inside and outside the slab are derived by use of Maxwell's equations and by matching the boundary conditions at the interfaces. Numerical simulations are presented and the field values as well as the power densities are computed. Negative refractions are demonstrated when the beam is transmitted through a uniaxial crystal slab. Beam splitting of the reflected beam is observed and is explained by the resonant transmission for plane waves. Dependences of the lateral shift on the incident angle and beam width are discussed. Negative and positive lateral shifts are observed due to the spatial anisotropic properties.
Resumo:
The relationship between transmission area of an object imaged and the visibility of correlated imaging is investigated in a lensless system. We show that they are not in simple inverse proportion, as usually depicted. The changes of the visibility will be quite different when the transmission area is varied by different manners, which may motivate people to seek a new understanding about the influence factors of the visibility. (C) 2007 Optical Society of America
Resumo:
Theoretically, we analyse the dispersion compensation characteristics of the chirped fibre grating (CFG) in an optical fibre cable television (CATV) system and obtain the analytic expression of the composite second-order (CSO) distortion using the time-domain form of the field envelope wave equation. The obtained result is in good agreement with the numerical simulation result. Experimentally, we verify the result by making use of the tunable characteristics of CFG to change the dispersion compensation amount and obtain an optimal CSO performance in a 125km fibre transmission link. Both the theoretical and experimental results show that the CSO performance can be improved by properly choosing the dispersion compensation amount for a certain fibre transmission link.
Resumo:
As feature size decreases, especially with the use of resolution enhancement technique, requirements for the coma aberrations in the projection lenses of the lithographic tools have become extremely severe. So, fast and accurate in situ measurement of coma is necessary. In the present paper, we present a new method for characterizing the coma aberrations in the projection lens using a phase-shifting mask and a transmission image sensor. By measuring the image positions at multiple NA and partial coherence settings, we are able to extract the coma aberration. The simulation results show that the accuracy of coma measurement increases approximately 20% compared to the previous straightforward measurement technique. (c) 2005 Elsevier GmbH. All rights reserved.