984 resultados para Transmembrane Glycoprotein
Resumo:
BACKGROUND Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in Southeast Asia. Vaccination of domestic pigs has been suggested as a "one health" strategy to reduce viral disease transmission to humans. The efficiency of two lentiviral TRIP/JEV vectors expressing the JEV envelope prM and E glycoproteins at eliciting protective humoral response was assessed in a mouse model and piglets. METHODOLOGY/PRINCIPAL FINDINGS A gene encoding the envelope proteins prM and E from a genotype 3 JEV strain was inserted into a lentiviral TRIP vector. Two lentiviral vectors TRIP/JEV were generated, each expressing the prM signal peptide followed by the prM protein and the E glycoprotein, the latter being expressed either in its native form or lacking its two C-terminal transmembrane domains. In vitro transduction of cells with the TRIP/JEV vector expressing the native prM and E resulted in the efficient secretion of virus-like particles of Japanese encephalitis virus. Immunization of BALB/c mice with TRIP/JEV vectors resulted in the production of IgGs against Japanese encephalitis virus, and the injection of a second dose one month after the prime injection greatly boosted antibody titers. The TRIP/JEV vectors elicited neutralizing antibodies against JEV strains belonging to genotypes 1, 3, and 5. Immunization of piglets with two doses of the lentiviral vector expressing JEV virus-like particles led to high titers of anti-JEV antibodies, that had efficient neutralizing activity regardless of the JEV genotype tested. CONCLUSIONS/SIGNIFICANCE Immunization of pigs with the lentiviral vector expressing JEV virus-like particles is particularly efficient to prime antigen-specific humoral immunity and trigger neutralizing antibody responses against JEV genotypes 1, 3, and 5. The titers of neutralizing antibodies elicited by the TRIP/JEV vector are sufficient to confer protection in domestic pigs against different genotypes of JEV and this could be of a great utility in endemic regions where more than one genotype is circulating.
Resumo:
Mouse mammary tumor virus (MMTV) contained six major proteins, identified as gp55, gp33, p25, pp20, p12, and p10. Immunoprecipitation of cytoplasmic extracts from MMTV-infected, pulse-labeled cells identified three MMTV core-specific precursor proteins, termed Pr78('gag), Pr110('gag), Pr110('gag), and Pr180('gag+). The major intracellular core-specific precursor polyprotein, Pr78('gag), contained antigenic determinants and tryptic peptides characteristic of p25, p12, and p10. Pr110('gag) contained all but one of the leucine-containing tryptic peptides of Pr78('gag), plus several additional peptides. In addition to Pr78('gag) and Pr110('gag), monospecific antisera to virion p12 and p25 also precipitated from pulse-labeled cells a small amount of Pr180('gag+). This large polyprotein contained nearly all of the leucine-containing tryptic peptides of Pr78('gag) and Pr110('gag) plus several additional peptides. By analogy to type-C viral systems, Pr180('gag+) is presumed to represent a gag-pol-specific common precursor which is the major translation product in the synthesis of MMTV RNA-dependent-DNA polymerase. Immunoprecipitation of cytoplasmic extracts from pulse-labeled cells with antisera to gp55 identified two envelope-specific proteins, designated gPr76('env) and gP79('env). The major envelope-specific precursor, gPr76('env), could be labeled with radioactive glucosamine and contained antigenic determinants and tryptic peptides characteristic of gp55 and gp33. A quantitatively minor glycoprotein, gP79('env), contained both fucose and glucosamine and was precipitable from cytoplasmic extracts with monospecific serum to gp55. It is suggested that gP79('env) represents fucosylated gPr76('env) which is transiently synthesized and cleaved rapidly into gp55 and gp33.^ A glycoprotein of 130,00 molecular weight (gP130) was precipitable from the cytoplasm of GR-strain mouse mammary tumor cells by a rabbit antiserum (anti-MMTV) to Gr-strain mouse mammary tumors virus (GR-MMTV). Two dimensional thin layer analysis of ('35)S-methionine-containing peptides revealed that five of nine gp33 peptides and one of seven gp55 peptides were shared by gP130 and gPr76('env). Six of ten p25 peptides and four more core-related peptides were shared by Pr78('gag) and gP130. Protein gP130 also contained several tryptic peptides not found in gPr76('env), or in the core protein precursors Pr78('gag), Pr110('gag), or Pr180('gag+). both gP130 and a second protein, p30, were found in immunoprecipitates of detergent disrupted, isotopically labeled GR-MMTV treated with anti-MMTV serum. Results suggest that antibodies to gP130 in the anti-MMTV serum are capable of recognizing those protein sequences which are not related to viral structural proteins. These gP130-unique peptides are evidently host specific. Polyproteins consisting of juxtaposed host- and virus-related protein tracts have been implicated in the process of cell transformation in other mammalian systems. Therefore, gP130 may be instrinsic to the oncogenic potential of MMTV. ^
Resumo:
The MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in several cancers of epithelial origin, including those of breast, pancreas, lung, ovary, and colon. Functions of MUC1 include protection of mucosal epithelium, modulation of cellular adhesion, and signal transduction. Aberrantly increased expression of MUC1 in cancer cells promotes tumor progression through adaptation of these functions. Some regulatory elements participating in MUC1 transcription have been described, but the mechanisms responsible for overexpression are largely unknown. A region of MUC1 5′ flanking sequence containing two conserved potential cytokine response elements, an NFκB site at −589/−580 and a STAT binding element (SBE) at −503/−495, has been implicated in high level expression in breast and pancreatic cancer cell lines. Persistent stimulation by proinflammatory cytokines may contribute to increased MUC1 transcription by tumor cells. ^ T47D breast cancer cells and normal human mammary epithelial cells (HMEC) were used to determine the roles of the κB site and SBE in basal and stimulated expression of MUC1. Treatment of T47D cells and HMEC with interferon-γ (IFNγ) alone enhanced MUC1 expression at the level of transcription, and the effect of IFNγ was further stimulated by tumor necrosis factor-α (TNFα). MUC1 responsiveness to these cytokines was modest in T47D cells but clearly evident in HMEC. Transient transfection of T47D cells with mutant MUC1 promoter constructs revealed that the κB site at −589/−580 and the SBE at −503/−495 and were required for cooperative stimulation by TNFα and IFNγ. Electrophoretic mobility shift assays (EMSA) revealed that the synergy was mediated not by cooperative binding of transcription factors but by the independent actions of STAT1α and NFκB p65 on their respective binding sites. Independent mutations in the κB site and SBE abrogated cytokine responsiveness and reduced basal MUC1 promoter activity by 45–50%. However, only the κB site appeared to be constitutively activated in T47D cells, in part by NFκB p65. These findings implicate two cytokine response elements in the 5 ′ flanking region of MUC1, specifically a κB site and a STAT binding element, in overexpression of MUC1 in breast cancer cells. ^
Resumo:
Membrane proteins are critical to every aspect of cell physiology, with their association mediating important biological functions. The transmembrane and cytoplasmic domains are known to be important for their association. In order to characterize their role in detail, we have applied different biophysical techniques in detergent micelles to two model systems. The first study involves FcRγ, a single transmembrane domain protein existing as a disulfide linked homodimer. We investigated the role of a conserved transmembrane polar residue and the cytoplasmic tail in FcRγ homo-interactions. Our results by various biophysical techniques including SDS-PAGE, circular dichroism and sedimentation equilibrium in detergent micelles indicate importance of both the transmembrane polar residue and cytoplasmic tail in maintaining proper conformation for FcRγ homo-interactions. A contrasting second study was on L-selectin, another single transmembrane domain protein with a large extracellular domain and a short cytoplasmic tail. Previous cross-linking experiments indicate its possible dimerization. However, the purified fragment of L-selectin and corresponding mutants did not dimerize when analyzed by TOXCAT assay, sedimentation equilibrium and fluorescence resonance energy transfer. It was likely that the presence of juxtamembrane positively charged residues led to decreased migrational rates in SDS PAGE. In conclusion, complementary biophysical techniques should be used with care when studying membrane protein association in detergent micelles. As an extension to our study on L-selectin, we also investigated its interaction with Calmodulin (CaM) in detergent micelles. CaM was found to interact with different detergents. We applied fluorescence and NMR spectroscopy to characterize the interaction of both the apo and Ca 2+ bound form of CaM, with commonly used detergents, below and above their respective critical micelle concentrations. The interaction of apo-CaM with detergents was found to vary with the nature of the detergent head group, whereas Ca2+-CaM interacted with individual detergent molecules irrespective of the nature of their head group. NMR titration experiments of CaM with detergents indicated involvement of specific residues from the N-lobe, linker and C-lobe of CaM. ^
Resumo:
Orosomucoid (ORM) or alpha-1 acid glycoprotein is an acute phase protein of human plasma whose function is suggested to be the competitive inhibition of cellular recognition by infective agents. Isoelectric focusing (IEF) and immunoblotting have been combined and optimum conditions have been determined for reliable classification of different ORM phenotypes. Addition of 6 M urea in an IEF gel revealed additional microheterogeneity in the ORM system which has not been previously reported. 1,667 individuals from different native ethnic groups of North and South America, Africa and New Guinea have been screened to determine the distribution of ORM alleles. Two common alleles, ORM1*1 and ORM1*2 have been observed and their frequencies were determined. Genetically independent variation consistent with expression of the ORM2 locus was observed in American and African blacks but was not observed in other sampled populations. The population allele frequencies for this new locus were 0.958, 0.025, 0.006, 0.011, for alleles ORM2*1, ORM2*2, ORM2*3, ORM2*4, respectively. Family studies confirm the autosomal codominant inheritance of the phenotypes observed at both ORM loci. ^
Resumo:
We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^
Resumo:
The blood–brain barrier and a blood–cerebrospinal-fluid (CSF) barrier function together to isolate the brain from circulating drugs, toxins, and xenobiotics. The blood–CSF drug-permeability barrier is localized to the epithelium of the choroid plexus (CP). However, the molecular mechanisms regulating drug permeability across the CP epithelium are defined poorly. Herein, we describe a drug-permeability barrier in human and rodent CP mediated by epithelial-specific expression of the MDR1 (multidrug resistance) P glycoprotein (Pgp) and the multidrug resistance-associated protein (MRP). Noninvasive single-photon-emission computed tomography with 99mTc-sestamibi, a membrane-permeant radiopharmaceutical whose transport is mediated by both Pgp and MRP, shows a large blood-to-CSF concentration gradient across intact CP epithelium in humans in vivo. In rats, pharmacokinetic analysis with 99mTc-sestamibi determined the concentration gradient to be greater than 100-fold. In membrane fractions of isolated native CP from rat, mouse, and human, the 170-kDa Pgp and 190-kDa MRP are identified readily. Furthermore, the murine proteins are absent in CP isolated from their respective mdr1a/1b(−/−) and mrp(−/−) gene knockout littermates. As determined by immunohistochemical and drug-transport analysis of native CP and polarized epithelial cell cultures derived from neonatal rat CP, Pgp localizes subapically, conferring an apical-to-basal transepithelial permeation barrier to radiolabeled drugs. Conversely, MRP localizes basolaterally, conferring an opposing basal-to-apical drug-permeation barrier. Together, these transporters may coordinate secretion and reabsorption of natural product substrates and therapeutic drugs, including chemotherapeutic agents, antipsychotics, and HIV protease inhibitors, into and out of the central nervous system.
Resumo:
Voltage-dependent and calcium-sensitive K+ (MaxiK) channels are key regulators of neuronal excitability, secretion, and vascular tone because of their ability to sense transmembrane voltage and intracellular Ca2+. In most tissues, their stimulation results in a noninactivating hyperpolarizing K+ current that reduces excitability. In addition to noninactivating MaxiK currents, an inactivating MaxiK channel phenotype is found in cells like chromaffin cells and hippocampal neurons. The molecular determinants underlying inactivating MaxiK channels remain unknown. Herein, we report a transmembrane β subunit (β2) that yields inactivating MaxiK currents on coexpression with the pore-forming α subunit of MaxiK channels. Intracellular application of trypsin as well as deletion of 19 N-terminal amino acids of the β2 subunit abolished inactivation of the α subunit. Conversely, fusion of these N-terminal amino acids to the noninactivating smooth muscle β1 subunit leads to an inactivating phenotype of MaxiK channels. Furthermore, addition of a synthetic N-terminal peptide of the β2 subunit causes inactivation of the MaxiK channel α subunit by occluding its K+-conducting pore resembling the inactivation caused by the “ball” peptide in voltage-dependent K+ channels. Thus, the inactivating phenotype of MaxiK channels in native tissues can result from the association with different β subunits.
Resumo:
Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the C-terminal transmembrane/luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein. The I4898T mutation was introduced into a rabbit RYR1 cDNA and expressed in HEK-293 cells. The response of the mutant RyR1 Ca2+ channel to the agonists halothane and caffeine in a Ca2+ photometry assay was completely abolished. Coexpression of normal and mutant RYR1 cDNAs in a 1:1 ratio, however, produced RyR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca2+ release were reduced by 67%. [3H]Ryanodine binding indicated that the heterozygous channel is activated by Ca2+ concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells showed a significantly increased resting cytoplasmic Ca2+ level and a significantly reduced luminal Ca2+ level. These data are indicative of a leaky channel, possibly caused by a reduction in the Ca2+ concentration required for channel activation. Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.
Resumo:
Recent studies demonstrated that a synthetic fusion peptide of HIV-1 self-associates in phospholipid membranes and inhibits HIV-1 envelope glycoprotein-mediated cell fusion, presumably by interacting with the N-terminal domain of gp41 and forming inactive heteroaggregates [Kliger, Y., Aharoni, A., Rapaport, D., Jones, P., Blumenthal, R. & Shai, Y. (1997) J. Biol. Chem. 272, 13496–13505]. Here, we show that a synthetic all d-amino acid peptide corresponding to the N-terminal sequence of HIV-1 gp41 (D-WT) of HIV-1 associates with its enantiomeric wild-type fusion (WT) peptide in the membrane and inhibits cell fusion mediated by the HIV-1 envelope glycoprotein. D-WT does not inhibit cell fusion mediated by the HIV-2 envelope glycoprotein. WT and D-WT are equally potent in inducing membrane fusion. D-WT peptide but not WT peptide is resistant to proteolytic digestion. Structural analysis showed that the CD spectra of D-WT in trifluoroethanol/water is a mirror image of that of WT, and attenuated total reflectance–fourier transform infrared spectroscopy revealed similar structures and orientation for the two enantiomers in the membrane. The results reveal that the chirality of the synthetic peptide corresponding to the HIV-1 gp41 N-terminal sequence does not play a role in liposome fusion and that the peptides’ chirality is not necessarily required for peptide–peptide interaction within the membrane environment. Furthermore, studies along these lines may provide criteria to design protease-resistant therapeutic agents against HIV and other viruses.
Resumo:
P-glycoprotein (MDR-1) is a well-known transporter that mediates efflux of chemotherapeutic agents from the intracellular milieu and thereby contributes to drug resistance. MDR-1 also is expressed by nonmalignant cells, including leukocytes, but physiologic functions for MDR-1 are poorly defined. Using an initial screening assay that included >100 mAbs, we observed that neutralizing mAbs MRK16, UIC2, and 4E3 against MDR-1 specifically and potently blocked basal-to-apical transendothelial migration of mononuclear phagocytes, a process that may mimic their migration into lymphatic vessels. Antagonists of MDR-1 then were used in a model of authentic lymphatic clearance. In this model, antigen-presenting dendritic cells (DC) migrate out of explants of cultured human skin and into the culture medium via dermal lymphatic vessels. DC and T cells derived from skin expressed MDR-1 on their surfaces. Addition of anti-MDR-1 mAbs MRK16, UIC2, or the MDR-1 antagonist verapamil to skin explants at the onset of culture inhibited the appearance of DC, and accompanying T cells, in the culture medium by approximately 70%. Isotype-matched control mAbs against other DC molecules including CD18, CD31, and major histocompatibility complex I did not block. In the presence of MDR-1 antagonists, epidermal DC were retained in the epidermis, in contrast to control conditions. In summary, this work identifies a physiologic function for MDR-1 during the mobilization of DC and begins to elucidate how these critical antigen-presenting cells migrate from the periphery to lymph nodes to initiate T lymphocyte-mediated immunity.
Resumo:
Multidrug resistance mediated by the drug efflux protein, P-glycoprotein (P-gp), is one mechanism that tumor cells use to escape death induced by chemotherapeutic agents. However, the mechanism by which P-gp confers resistance to a large variety of structurally diverse molecules has remained elusive. In this study, classical multidrug resistant human CEM and K562 tumor cell lines expressing high levels of P-gp were less sensitive to multiple forms of caspase-dependent cell death, including that mediated by cytotoxic drugs and ligation of Fas. The DNA fragmentation and membrane damage inflicted by these stimuli were defined as caspase dependent by various soluble peptide fluoromethylketone caspase inhibitors. Inhibition of P-gp function by the anti-P-gp mAb MRK-16 or verapamil could reverse resistance to these forms of cell death. Inhibition of P-gp function also enhanced drug or Fas-mediated activation of caspase-3 in drug-resistant CEM cells. By contrast, caspase-independent cell death events in the same cells, including those mediated by pore-forming proteins or intact NK cells, were not affected by P-gp expression. These observations suggest that, in addition to effluxing drugs, P-gp may play a specific role in regulating some caspase-dependent apoptotic pathways.
Resumo:
Presenilins have been implicated in the genesis of Alzheimer’s disease and in facilitating LIN-12/Notch activity during development. All presenilins have multiple hydrophobic regions that could theoretically span a membrane, and a description of the membrane topology is a crucial step toward deducing the mechanism of presenilin function. Previously, we proposed an eight-transmembrane-domain model for presenilin, based on studies of the Caenorhabditis elegans SEL-12 presenilin. Here, we describe experiments that support the view that two of the hydrophobic regions of SEL-12 function as the seventh and eighth transmembrane domains. Furthermore, we have shown that human presenilin 1 behaves like SEL-12 presenilin when analyzed by our methods. Our results provide additional experimental support for the eight-transmembrane-domain model of presenilin topology.
Resumo:
Purines can modify ciliary epithelial secretion of aqueous humor into the eye. The source of the purinergic agonists acting in the ciliary epithelium, as in many epithelial tissues, is unknown. We found that the fluorescent ATP marker quinacrine stained rabbit and bovine ciliary epithelia but not the nerve fibers in the ciliary bodies. Cultured bovine pigmented and nonpigmented ciliary epithelial cells also stained intensely when incubated with quinacrine. Hypotonic stimulation of cultured epithelial cells increased the extracellular ATP concentration by 3-fold; this measurement underestimates actual release as the cells also displayed ecto-ATPase activity. The hypotonically triggered increase in ATP was inhibited by the Cl−-channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in both cell types. In contrast, the P-glycoprotein inhibitors tamoxifen and verapamil and the cystic fibrosis transmembrane conductance regulator (CFTR) blockers glybenclamide and diphenylamine-2-carboxylate did not affect ATP release from either cell type. This pharmacological profile suggests that ATP release is not restricted to P-glycoprotein or the cystic fibrosis transmembrane conductance regulator, but can proceed through a route sensitive to NPPB. ATP release also was triggered by ionomycin through a different NPPB-insensitive mechanism, inhibitable by the calcium/calmodulin-activated kinase II inhibitor KN-62. Thus, both layers of the ciliary epithelium store and release ATP, and purines likely modulate aqueous humor flow by paracrine and/or autocrine mechanisms within the two cell layers of this epithelium.
Resumo:
The human and shark Na–K–Cl cotransporters (NKCC), although 74% identical in amino acid sequence, exhibit marked differences in ion transport and bumetanide binding. We have utilized shark–human chimeras of NKCC1 to search for regions that confer the kinetic differences. Two chimeras (hs3.1 and its reverse sh3.1) with a junction point located at the beginning of the third transmembrane domain were examined after stable transfection in HEK-293 cells. Each carried out bumetanide-sensitive 86Rb influx with cation affinities intermediate between shark and human cotransporters. In conjunction with the previous finding that the N and C termini are not responsible for differences in ion transport, the current observations identify the second transmembrane domain as playing an important role. Site-specific mutagenesis of two pairs of residues in this domain revealed that one pair is indeed involved in the difference in Na affinity, and a second pair is involved in the difference in Rb affinity. Substitution of the same residues with corresponding residues from NKCC2 or the Na-Cl cotransporter resulted in cation affinity changes, consistent with the hypothesis that alternative splicing of transmembrane domain 2 endows different versions of NKCC2 with unique kinetic behaviors. None of the changes in transmembrane domain 2 was found to substantially affect Km(Cl), demonstrating that the affinity difference for Cl is specified by the region beyond predicted transmembrane domain 3. Finally, unlike Cl, bumetanide binding was strongly affected by shark–human replacement of transmembrane domain 2, indicating that the bumetanide-binding site is not the same as the Cl-binding site.