892 resultados para Topographic categorization
Resumo:
Electronic services are a leitmotif in ‘hot’ topics like Software as a Service, Service Oriented Architecture (SOA), Service oriented Computing, Cloud Computing, application markets and smart devices. We propose to consider these in what has been termed the Service Ecosystem (SES). The SES encompasses all levels of electronic services and their interaction, with human consumption and initiation on its periphery in much the same way the ‘Web’ describes a plethora of technologies that eventuate to connect information and expose it to humans. Presently, the SES is heterogeneous, fragmented and confined to semi-closed systems. A key issue hampering the emergence of an integrated SES is Service Discovery (SD). A SES will be dynamic with areas of structured and unstructured information within which service providers and ‘lay’ human consumers interact; until now the two are disjointed, e.g., SOA-enabled organisations, industries and domains are choreographed by domain experts or ‘hard-wired’ to smart device application markets and web applications. In a SES, services are accessible, comparable and exchangeable to human consumers closing the gap to the providers. This requires a new SD with which humans can discover services transparently and effectively without special knowledge or training. We propose two modes of discovery, directed search following an agenda and explorative search, which speculatively expands knowledge of an area of interest by means of categories. Inspired by conceptual space theory from cognitive science, we propose to implement the modes of discovery using concepts to map a lay consumer’s service need to terminologically sophisticated descriptions of services. To this end, we reframe SD as an information retrieval task on the information attached to services, such as, descriptions, reviews, documentation and web sites - the Service Information Shadow. The Semantic Space model transforms the shadow's unstructured semantic information into a geometric, concept-like representation. We introduce an improved and extended Semantic Space including categorization calling it the Semantic Service Discovery model. We evaluate our model with a highly relevant, service related corpus simulating a Service Information Shadow including manually constructed complex service agendas, as well as manual groupings of services. We compare our model against state-of-the-art information retrieval systems and clustering algorithms. By means of an extensive series of empirical evaluations, we establish optimal parameter settings for the semantic space model. The evaluations demonstrate the model’s effectiveness for SD in terms of retrieval precision over state-of-the-art information retrieval models (directed search) and the meaningful, automatic categorization of service related information, which shows potential to form the basis of a useful, cognitively motivated map of the SES for exploratory search.
Resumo:
Topographic structural complexity of a reef is highly correlated to coral growth rates, coral cover and overall levels of biodiversity, and is therefore integral in determining ecological processes. Modeling these processes commonly includes measures of rugosity obtained from a wide range of different survey techniques that often fail to capture rugosity at different spatial scales. Here we show that accurate estimates of rugosity can be obtained from video footage captured using underwater video cameras (i.e., monocular video). To demonstrate the accuracy of our method, we compared the results to in situ measurements of a 2m x 20m area of forereef from Glovers Reef atoll in Belize. Sequential pairs of images were used to compute fine scale bathymetric reconstructions of the reef substrate from which precise measurements of rugosity and reef topographic structural complexity can be derived across multiple spatial scales. To achieve accurate bathymetric reconstructions from uncalibrated monocular video, the position of the camera for each image in the video sequence and the intrinsic parameters (e.g., focal length) must be computed simultaneously. We show that these parameters can be often determined when the data exhibits parallax-type motion, and that rugosity and reef complexity can be accurately computed from existing video sequences taken from any type of underwater camera from any reef habitat or location. This technique provides an infinite array of possibilities for future coral reef research by providing a cost-effective and automated method of determining structural complexity and rugosity in both new and historical video surveys of coral reefs.
Resumo:
In urbanised areas, the flood flows constitute a hazard to populations and infrastructure as illustrated during major floods in 2011. During the 2011 Brisbane River flood, some turbulent velocity data were collected using acoustic Doppler velocimetry in an inundated street. The field deployment showed some unusual features of flood flow in the urban environment. That is, the water elevations and velocities fluctuated with distinctive periods between 50 and 100 s linked with some local topographic effects. The instantaneous velocity data were analysed using a triple decomposition. The velocity fluctuations included a large energy component in the slow fluctuation range, while the turbulent motion components were much smaller. The suspended sediment data showed some significant longitudinal flux. Altogether the results highlighted that the triple decomposition approach originally developed for period flows is well suited to complicated flows in an inundated urban environment.
Resumo:
There is a need for an accurate real-time quantitative system that would enhance decision-making in the treatment of osteoarthritis. To achieve this objective, significant research is required that will enable articular cartilage properties to be measured and categorized for health and functionality without the need for laboratory tests involving biopsies for pathological evaluation. Such a system would provide the capability of access to the internal condition of the cartilage matrix and thus extend the vision-based arthroscopy that is currently used beyond the subjective evaluation of surgeons. The system required must be able to non-destructively probe the entire thickness of the cartilage and its immediate subchondral bone layer. In this thesis, near infrared spectroscopy is investigated for the purpose mentioned above. The aim is to relate it to the structure and load bearing properties of the cartilage matrix to the near infrared absorption spectrum and establish functional relationships that will provide objective, quantitative and repeatable categorization of cartilage condition outside the area of visible degradation in a joint. Based on results from traditional mechanical testing, their innovative interpretation and relationship with spectroscopic data, new parameters were developed. These were then evaluated for their consistency in discriminating between healthy viable and degraded cartilage. The mechanical and physico-chemical properties were related to specific regions of the near infrared absorption spectrum that were identified as part of the research conducted for this thesis. The relationships between the tissue's near infrared spectral response and the new parameters were modeled using multivariate statistical techniques based on partial least squares regression (PLSR). With significantly high levels of statistical correlation, the modeled relationships were demonstrated to possess considerable potential in predicting the properties of unknown tissue samples in a quick and non-destructive manner. In order to adapt near infrared spectroscopy for clinical applications, a balance between probe diameter and the number of active transmit-receive optic fibres must be optimized. This was achieved in the course of this research, resulting in an optimal probe configuration that could be adapted for joint tissue evaluation. Furthermore, as a proof-of-concept, a protocol for obtaining the new parameters from the near infrared absorption spectra of cartilage was developed and implemented in a graphical user interface (GUI)-based software, and used to assess cartilage-on-bone samples in vitro. This conceptual implementation has been demonstrated, in part by the individual parametric relationship with the near infrared absorption spectrum, the capacity of the proposed system to facilitate real-time, non-destructive evaluation of cartilage matrix integrity. In summary, the potential of the optical near infrared spectroscopy for evaluating articular cartilage and bone laminate has been demonstrated in this thesis. The approach could have a spin-off for other soft tissues and organs of the body. It builds on the earlier work of the group at QUT, enhancing the near infrared component of the ongoing research on developing a tool for cartilage evaluation that goes beyond visual and subjective methods.
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
In order to read this Project Management Journal issue, I suggest embracing a modeling perspective. Talking about modeling should lead me to define what is meant by “model” and to develop some kind of categorization, classification, or taxonomy of models. One can consider basic categories like quantitative vs. qualitative, explanatory vs. predictive, stochastic, nonstochastic mathematical, or qualitative models, linear vs. nonlinear and their underlying assumptions, degree of simplification, systemic effects integration, and so on...
Resumo:
Flood related scientific and community-based data are rarely systematically collected and analysed in the Philippines. Over the last decades the Pagsangaan River Basin, Leyte, has experienced several flood events. However, documentation describing flood characteristics such as extent, duration or height of these floods are close to non-existing. To address this issue, computerized flood modelling was used to reproduce past events where there was data available for at least partial calibration and validation. The model was also used to provide scenario-based predictions based on A1B climate change assumptions for the area. The most important input for flood modelling is a Digital Elevation Model (DEM) of the river basin. No accurate topographic maps or Light Detection And Ranging (LIDAR)-generated data are available for the Pagsangaan River. Therefore, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Map (GDEM), Version 1, was chosen as the DEM. Although the horizontal spatial resolution of 30 m is rather desirable, it contains substantial vertical errors. These were identified, different correction methods were tested and the resulting DEM was used for flood modelling. The above mentioned data were combined with cross-sections at various strategic locations of the river network, meteorological records, river water level, and current velocity to develop the 1D-2D flood model. SOBEK was used as modelling software to create different rainfall scenarios, including historic flooding events. Due to the lack of scientific data for the verification of the model quality, interviews with local stakeholders served as the gauge to judge the quality of the generated flood maps. According to interviewees, the model reflects reality more accurately than previously available flood maps. The resulting flood maps are now used by the operations centre of a local flood early warning system for warnings and evacuation alerts. Furthermore these maps can serve as a basis to identify flood hazard areas for spatial land use planning purposes.
Resumo:
Recent research has proposed Neo-Piagetian theory as a useful way of describing the cognitive development of novice programmers. Neo-Piagetian theory may also be a useful way to classify materials used in learning and assessment. If Neo-Piagetian coding of learning resources is to be useful then it is important that practitioners can learn it and apply it reliably. We describe the design of an interactive web-based tutorial for Neo-Piagetian categorization of assessment tasks. We also report an evaluation of the tutorial's effectiveness, in which twenty computer science educators participated. The average classification accuracy of the participants on each of the three Neo-Piagetian stages were 85%, 71% and 78%. Participants also rated their agreement with the expert classifications, and indicated high agreement (91%, 83% and 91% across the three Neo-Piagetian stages). Self-rated confidence in applying Neo-Piagetian theory to classifying programming questions before and after the tutorial were 29% and 75% respectively. Our key contribution is the demonstration of the feasibility of the Neo-Piagetian approach to classifying assessment materials, by demonstrating that it is learnable and can be applied reliably by a group of educators. Our tutorial is freely available as a community resource.
Resumo:
None of currently used tonometers produce estimated IOP values that are free of errors. Measurement incredibility arises from indirect measurement of corneal deformation and the fact that pressure calculations are based on population averaged parameters of anterior segment. Reliable IOP values are crucial for understanding and monitoring of number of eye pathologies e.g. glaucoma. We have combined high speed swept source OCT with air-puff chamber. System provides direct measurement of deformation of cornea and anterior surface of the lens. This paper describes in details the performance of air-puff ssOCT instrument. We present different approaches of data presentation and analysis. Changes in deformation amplitude appears to be good indicator of IOP changes. However, it seems that in order to provide accurate intraocular pressure values an additional information on corneal biomechanics is necessary. We believe that such information could be extracted from data provided by air-puff ssOCT.
Resumo:
Purpose – This chapter examines an episode of pretend play amongst a group of young girls in an elementary school in Australia, highlighting how they interact within the membership categorization device ‘family’ to manage their social and power relationships. Approach – Using conversation analysis and membership categorization analysis, an episode of video-recorded interaction that occurs amongst a group of four young girls is analyzed. Findings – As disputes arise amongst the girls, the mother category is produced as authoritative through authoritative actions by the girl in the category of mother, and displays of subordination on the part of the other children, in the categories of sister, dog and cat. Value of paper – Examining play as a social practice provides insight into the social worlds of children. The analysis shows how the children draw upon and co-construct family-style relationships in a pretend play context, in ways that enable them to build and organize peer interaction. Authority is highlighted as a joint accomplishment that is part of the social and moral order continuously being negotiated by the children. The authority of the mother category is produced and oriented to as a means of managing the disputes within the pretend frame of play.
Resumo:
Strike-slip faults commonly display structurally complex areas of positive or negative topography. Understanding the development of such areas has important implications for earthquake studies and hydrocarbon exploration. Previous workers identified the key factors controlling the occurrence of both topographic modes and the related structural styles. Kinematic and stress boundary conditions are of first-order relevance. Surface mass transport and material properties affect fault network structure. Experiments demonstrate that dilatancy can generate positive topography even under simple-shear boundary conditions. Here, we use physical models with sand to show that the degree of compaction of the deformed rocks alone can determine the type of topography and related surface fault network structure in simple-shear settings. In our experiments, volume changes of ∼5% are sufficient to generate localized uplift or subsidence. We discuss scalability of model volume changes and fault network structure and show that our model fault zones satisfy geometrical similarity with natural flower structures. Our results imply that compaction may be an important factor in the development of topography and fault network structure along strike-slip faults in sedimentary basins.
Resumo:
Flood flows in inundated urban environment constitute a natural hazard. During the 12- 13 January 2011 flood of the Brisbane River, detailed water elevation, velocity and suspended sediment data were recorded in an inundated street at the peak of the flood. The field observations highlighted a number of unusual flow interactions with the urban surroundings. These included some slow fluctuations in water elevations and velocity with distinctive periods between 50 and 100 s caused by some local topographic effect (choking), superposed with some fast turbulent fluctuations. The suspended sediment data highlighted some significant suspended sediment loads in the inundated zone.
Resumo:
Currently, mass spectrometry-based metabolomics studies extend beyond conventional chemical categorization and metabolic phenotype analysis to understanding gene function in various biological contexts (e.g., mammalian, plant, and microbial). These novel utilities have led to many innovative discoveries in the following areas: disease pathogenesis, therapeutic pathway or target identification, the biochemistry of animal and plant physiological and pathological activities in response to diverse stimuli, and molecular signatures of host-pathogen interactions during microbial infection. In this review, we critically evaluate the representative applications of mass spectrometry-based metabolomics to better understand gene function in diverse biological contexts, with special emphasis on working principles, study protocols, and possible future development of this technique. Collectively, this review raises awareness within the biomedical community of the scientific value and applicability of mass spectrometry-based metabolomics strategies to better understand gene function, thus advancing this application's utility in a broad range of biological fields
Resumo:
This article examines manual textual categorisation by human coders with the hypothesis that the law of total probability may be violated for difficult categories. An empirical evaluation was conducted to compare a one step categorisation task with a two step categorisation task using crowdsourcing. It was found that the law of total probability was violated. Both a quantum and classical probabilistic interpretations for this violation are presented. Further studies are required to resolve whether quantum models are more appropriate for this task.
Resumo:
Traditionally, infectious diseases and under-nutrition have been considered major health problems in Sri Lanka with little attention paid to obesity and associated non-communicable diseases (NCDs). However, the recent Sri Lanka Diabetes and Cardiovascular Study (SLDCS) reported the epidemic level of obesity, diabetes and metabolic syndrome. Moreover, obesity-associated NCDs is the leading cause of death in Sri Lanka and there is an exponential increase in hospitalization due to NCDs adversely affecting the development of the country. Despite Sri Lanka having a very high prevalence of NCDs and associated mortality, little is known about the causative factors for this burden. It is widely believed that the global NCD epidemic is associated with recent lifestyle changes, especially dietary factors. In the absence of sufficient data on dietary habits in Sri Lanka, successful interventions to manage these serious health issues would not be possible. In view of the current situation the dietary survey was undertaken to assess the intakes of energy, macro-nutrients and selected other nutrients with respect to socio demographic characteristics and the nutritional status of Sri Lankan adults especially focusing on obesity. Another aim of this study was to develop and validate a culturally specific food frequency questionnaire (FFQ) to assess dietary risk factors of NCDs in Sri Lankan adults. Data were collected from a subset of the national SLDCS using a multi-stage, stratified, random sampling procedure (n=500). However, data collection in the SLDCS was affected by the prevailing civil war which resulted in no data being collected from Northern and Eastern provinces. To obtain a nationally representative sample, additional subjects (n=100) were later recruited from the two provinces using similar selection criteria. Ethical Approval for this study was obtained from the Ethical Review Committee, Faculty of Medicine, University of Colombo, Sri Lanka and informed consent was obtained from the subjects before data were collected. Dietary data were obtained using the 24-h Dietary Recall (24HDR) method. Subjects were asked to recall all foods and beverages, consumed over the previous 24-hour period. Respondents were probed for the types of foods and food preparation methods. For the FFQ validation study, a 7-day weight diet record (7-d WDR) was used as the reference method. All foods recorded in the 24 HDR were converted into grams and then intake of energy and nutrients were analysed using NutriSurvey 2007 (EBISpro, Germany) which was modified for Sri Lankan food recipes. Socio-demographic details and body weight perception were collected from interviewer-administrated questionnaire. BMI was calculated and overweight (BMI ≥23 kg.m-2), obesity (BMI ≥25 kg.m-2) and abdominal obesity (Men: WC ≥ 90 cm; Women: WC ≥ 80 cm) were categorized according to Asia-pacific anthropometric cut-offs. The SPSS v. 16 for Windows and Minitab v10 were used for statistical analysis purposes. From a total of 600 eligible subjects, 491 (81.8%) participated of whom 34.5% (n=169) were males. Subjects were well distributed among different socio-economic parameters. A total of 312 different food items were recorded and nutritionists grouped similar food items which resulted in a total of 178 items. After performing step-wise multiple regression, 93 foods explained 90% of the variance for total energy intake, carbohydrates, protein, total fat and dietary fibre. Finally, 90 food items and 12 photographs were selected. Seventy-seven subjects completed (response rate = 65%) the FFQ and 7-day WDR. Estimated mean energy intake (SD) from FFQ (1794±398 kcal) and 7DWR (1698±333 kcal, P<0.001) was significantly different due to a significant overestimation of carbohydrate (~10 g/d, P<0.001) and to some extent fat (~5 g/d, NS). Significant positive correlations were found between the FFQ and 7DWR for energy (r = 0.39), carbohydrate (r = 0.47), protein (r = 0.26), fat (r =0.17) and dietary fiber (r = 0.32). Bland-Altman graphs indicated fairly good agreement between methods with no relationship between bias and average intake of each nutrient examined. The findings from the nutrition survey showed on average, Sri Lankan adults consumed over 14 portions of starch/d; moreover, males consumed 5 more portions of cereal than females. Sri Lankan adults consumed on average 3.56 portions of added sugars/d. Moreover, mean daily intake of fruit (0.43) and vegetable (1.73) portions was well below minimum dietary recommendations (fruits 2 portions/d; vegetables 3 portions/d). The total fruit and vegetable intake was 2.16 portions/d. Daily consumption of meat or alternatives was 1.75 portions and the sum of meat and pulses was 2.78 portions/d. Starchy foods were consumed by all participants and over 88% met the minimum daily recommendations. Importantly, nearly 70% of adults exceeded the maximum daily recommendation for starch (11portions/d) and a considerable proportion consumed larger numbers of starch servings daily, particularly men. More than 12% of men consumed over 25 starch servings/d. In contrast to their starch consumption, participants reported very low intakes of other food groups. Only 11.6%, 2.1% and 3.5% of adults consumed the minimum daily recommended servings of vegetables, fruits, and fruits and vegetables combined, respectively. Six out of ten adult Sri Lankans sampled did not consume any fruits. Milk and dairy consumption was extremely low; over a third of the population did not consume any dairy products and less than 1% of adults consumed 2 portions of dairy/d. A quarter of Sri Lankans did not report consumption of meat and pulses. Regarding protein consumption, 36.2% attained the minimum Sri Lankan recommendation for protein; and significantly more men than women achieved the recommendation of ≥3 servings of meat or alternatives daily (men 42.6%, women 32.8%; P<0.05). Over 70% of energy was derived from carbohydrates (Male:72.8±6.4%, Female:73.9±6.7%), followed by fat (Male:19.9±6.1%, Female:18.5±5.7%) and proteins (Male:10.6±2.1%, Female:10.9±5.6%). The average intake of dietary fiber was 21.3 g/day and 16.3 g/day for males and females, respectively. There was a significant difference in nutritional intake related to ethnicities, areas of residence, education levels and BMI categories. Similarly, dietary diversity was significantly associated with several socio-economic parameters among Sri Lankan adults. Adults with BMI ≥25 kg.m-2 and abdominally obese Sri Lankan adults had the highest diet diversity values. Age-adjusted prevalence (95% confidence interval) of overweight, obesity, and abdominal obesity among Sri Lankan adults were 17.1% (13.8-20.7), 28.8% (24.8-33.1), and 30.8% (26.8-35.2), respectively. Men, compared with women, were less overweight, 14.2% (9.4-20.5) versus 18.5% (14.4-23.3), P = 0.03, less obese, 21.0% (14.9-27.7) versus 32.7% (27.6-38.2), P < .05; and less abdominally obese, 11.9% (7.4-17.8) versus 40.6% (35.1-46.2), P < .05. Although, prevalence of obesity has reached to epidemic level body weight misperception was common among Sri Lankan adults. Two-thirds of overweight males and 44.7% of females considered themselves as in "about right weight". Over one third of both male and female obese subjects perceived themselves as "about right weight" or "underweight". Nearly 32% of centrally obese men and women perceived that their waist circumference is about right. People who perceived overweight or very overweight (n = 154) only 63.6% tried to lose their body weight (n = 98), and quarter of adults seek advices from professionals (n = 39). A number of important conclusions can be drawn from this research project. Firstly, the newly developed FFQ is an acceptable tool for assessing the nutrient intake of Sri Lankans and will assist proper categorization of individuals by dietary exposure. Secondly, a substantial proportion of the Sri Lankan population does not consume a varied and balanced diet, which is suggestive of a close association between the nutrition-related NCDs in the country and unhealthy eating habits. Moreover, dietary diversity is positively associated with several socio-demographic characteristics and obesity among Sri Lankan adults. Lastly, although obesity is a major health issue among Sri Lankan adults, body weight misperception was common among underweight, healthy weight, overweight, and obese adults in Sri Lanka. Over 2/3 of overweight and 1/3 of obese Sri Lankan adults believe that they are in "right weight" or "under-weight" categories.