967 resultados para Time Series Analisys
Resumo:
In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.
Resumo:
The calculation of interval forecasts for highly persistent autoregressive (AR) time series based on the bootstrap is considered. Three methods are considered for countering the small-sample bias of least-squares estimation for processes which have roots close to the unit circle: a bootstrap bias-corrected OLS estimator; the use of the Roy–Fuller estimator in place of OLS; and the use of the Andrews–Chen estimator in place of OLS. All three methods of bias correction yield superior results to the bootstrap in the absence of bias correction. Of the three correction methods, the bootstrap prediction intervals based on the Roy–Fuller estimator are generally superior to the other two. The small-sample performance of bootstrap prediction intervals based on the Roy–Fuller estimator are investigated when the order of the AR model is unknown, and has to be determined using an information criterion.
Resumo:
This chapter applies rigorous statistical analysis to existing datasets of medieval exchange rates quoted in merchants’ letters sent from Barcelona, Bruges and Venice between 1380 and 1310, which survive in the archive of Francesco di Marco Datini of Prato. First, it tests the exchange rates for stationarity. Second, it uses regression analysis to examine the seasonality of exchange rates at the three financial centres and compares them against contemporary descriptions by the merchant Giovanni di Antonio da Uzzano. Third, it tests for structural breaks in the exchange rate series.
Resumo:
This paper examines the cyclical regularities of macroeconomic, financial and property market aggregates in relation to the property stock price cycle in the UK. The Hodrick Prescott filter is employed to fit a long-term trend to the raw data, and to derive the short-term cycles of each series. It is found that the cycles of consumer expenditure, total consumption per capita, the dividend yield and the long-term bond yield are moderately correlated, and mainly coincident, with the property price cycle. There is also evidence that the nominal and real Treasury Bill rates and the interest rate spread lead this cycle by one or two quarters, and therefore that these series can be considered leading indicators of property stock prices. This study recommends that macroeconomic and financial variables can provide useful information to explain and potentially to forecast movements of property-backed stock returns in the UK.
Resumo:
Many key economic and financial series are bounded either by construction or through policy controls. Conventional unit root tests are potentially unreliable in the presence of bounds, since they tend to over-reject the null hypothesis of a unit root, even asymptotically. So far, very little work has been undertaken to develop unit root tests which can be applied to bounded time series. In this paper we address this gap in the literature by proposing unit root tests which are valid in the presence of bounds. We present new augmented Dickey–Fuller type tests as well as new versions of the modified ‘M’ tests developed by Ng and Perron [Ng, S., Perron, P., 2001. LAG length selection and the construction of unit root tests with good size and power. Econometrica 69, 1519–1554] and demonstrate how these tests, combined with a simulation-based method to retrieve the relevant critical values, make it possible to control size asymptotically. A Monte Carlo study suggests that the proposed tests perform well in finite samples. Moreover, the tests outperform the Phillips–Perron type tests originally proposed in Cavaliere [Cavaliere, G., 2005. Limited time series with a unit root. Econometric Theory 21, 907–945]. An illustrative application to U.S. interest rate data is provided
Resumo:
Climate data are used in a number of applications including climate risk management and adaptation to climate change. However, the availability of climate data, particularly throughout rural Africa, is very limited. Available weather stations are unevenly distributed and mainly located along main roads in cities and towns. This imposes severe limitations to the availability of climate information and services for the rural community where, arguably, these services are needed most. Weather station data also suffer from gaps in the time series. Satellite proxies, particularly satellite rainfall estimate, have been used as alternatives because of their availability even over remote parts of the world. However, satellite rainfall estimates also suffer from a number of critical shortcomings that include heterogeneous time series, short time period of observation, and poor accuracy particularly at higher temporal and spatial resolutions. An attempt is made here to alleviate these problems by combining station measurements with the complete spatial coverage of satellite rainfall estimates. Rain gauge observations are merged with a locally calibrated version of the TAMSAT satellite rainfall estimates to produce over 30-years (1983-todate) of rainfall estimates over Ethiopia at a spatial resolution of 10 km and a ten-daily time scale. This involves quality control of rain gauge data, generating locally calibrated version of the TAMSAT rainfall estimates, and combining these with rain gauge observations from national station network. The infrared-only satellite rainfall estimates produced using a relatively simple TAMSAT algorithm performed as good as or even better than other satellite rainfall products that use passive microwave inputs and more sophisticated algorithms. There is no substantial difference between the gridded-gauge and combined gauge-satellite products over the test area in Ethiopia having a dense station network; however, the combined product exhibits better quality over parts of the country where stations are sparsely distributed.
Resumo:
African societies are dependent on rainfall for agricultural and other water-dependent activities, yet rainfall is extremely variable in both space and time and reoccurring water shocks, such as drought, can have considerable social and economic impacts. To help improve our knowledge of the rainfall climate, we have constructed a 30-year (1983–2012), temporally consistent rainfall dataset for Africa known as TARCAT (TAMSAT African Rainfall Climatology And Time-series) using archived Meteosat thermal infra-red (TIR) imagery, calibrated against rain gauge records collated from numerous African agencies. TARCAT has been produced at 10-day (dekad) scale at a spatial resolution of 0.0375°. An intercomparison of TARCAT from 1983 to 2010 with six long-term precipitation datasets indicates that TARCAT replicates the spatial and seasonal rainfall patterns and interannual variability well, with correlation coefficients of 0.85 and 0.70 with the Climate Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC) gridded-gauge analyses respectively in the interannual variability of the Africa-wide mean monthly rainfall. The design of the algorithm for drought monitoring leads to TARCAT underestimating the Africa-wide mean annual rainfall on average by −0.37 mm day−1 (21%) compared to other datasets. As the TARCAT rainfall estimates are historically calibrated across large climatically homogeneous regions, the data can provide users with robust estimates of climate related risk, even in regions where gauge records are inconsistent in time.
Resumo:
Empirical Mode Decomposition is presented as an alternative to traditional analysis methods to decompose geomagnetic time series into spectral components. Important comments on the algorithm and its variations will be given. Using this technique, planetary wave modes of 5-, 10-, and 16-day mean periods can be extracted from magnetic field components of three different stations in Germany. In a second step, the amplitude modulation functions of these wave modes can be shown to contain significant contribution from solar cycle variation through correlation with smoothed sunspot numbers. Additionally, the data indicate connections with geomagnetic jerk occurrences, supported by a second set of data providing reconstructed near-Earth magnetic field for 150 years. Usually attributed to internal dynamo processes within the Earth's outer core, the question of who is impacting whom will be briefly discussed here.
Resumo:
The Arctic is an important region in the study of climate change, but monitoring surface temperatures in this region is challenging, particularly in areas covered by sea ice. Here in situ, satellite and reanalysis data were utilised to investigate whether global warming over recent decades could be better estimated by changing the way the Arctic is treated in calculating global mean temperature. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques. Kriging techniques provided the smallest errors in anomaly estimates. Similar accuracies were found for anomalies estimated from in situ meteorological station SAT records using a kriging technique. Whether additional data sources, which are not currently utilised in temperature anomaly datasets, would improve estimates of Arctic surface air temperature anomalies was investigated within the reanalysis testbed and using in situ data. For the reanalysis study, the additional input anomalies were reanalysis data sampled at certain supplementary data source locations over Arctic land and sea ice areas. For the in situ data study, the additional input anomalies over sea ice were surface temperature anomalies derived from the Advanced Very High Resolution Radiometer satellite instruments. The use of additional data sources, particularly those located in the Arctic Ocean over sea ice or on islands in sparsely observed regions, can lead to substantial improvements in the accuracy of estimated anomalies. Decreases in Root Mean Square Error can be up to 0.2K for Arctic-average anomalies and more than 1K for spatially resolved anomalies. Further improvements in accuracy may be accomplished through the use of other data sources.
Resumo:
Flickering is a phenomenon related to mass accretion observed among many classes of astrophysical objects. In this paper we present a study of flickering emission lines and the continuum of the cataclysmic variable V3885 Sgr. The flickering behavior was first analyzed through statistical analysis and the power spectra of lightcurves. Autocorrelation techniques were then employed to estimate the flickering timescale of flares. A cross-correlation study between the line and its underlying continuum variability is presented. The cross-correlation between the photometric and spectroscopic data is also discussed. Periodograms, calculated using emission-line data, show a behavior that is similar to those obtained from photometric datasets found in the literature, with a plateau at lower frequencies and a power-law at higher frequencies. The power-law index is consistent with stochastic events. The cross-correlation study indicates the presence of a correlation between the variability on Ha and its underlying continuum. Flickering timescales derived from the photometric data were estimated to be 25 min for two lightcurves and 10 min for one of them. The average timescales of the line flickering is 40 min, while for its underlying continuum it drops to 20 min.
Resumo:
Most studies involving statistical time series analysis rely on assumptions of linearity, which by its simplicity facilitates parameter interpretation and estimation. However, the linearity assumption may be too restrictive for many practical applications. The implementation of nonlinear models in time series analysis involves the estimation of a large set of parameters, frequently leading to overfitting problems. In this article, a predictability coefficient is estimated using a combination of nonlinear autoregressive models and the use of support vector regression in this model is explored. We illustrate the usefulness and interpretability of results by using electroencephalographic records of an epileptic patient.
Resumo:
Electrochemical systems are ideal working-horses for studying oscillatory dynamics. Experimentally obtained time series, however, are usually associated with a spontaneous drift in some uncontrollable parameter that triggers transitions among different oscillatory patterns, despite the fact that all controllable parameters are kept constant. Herein we present an empirical method to stabilize experimental potential time series. The method consists of applying a negative galvanodynamic sweep to compensate the spontaneous drift and was tested for the oscillatory electro-oxidation of methanol on platinum. For a wide range of applied currents, the base system presents spontaneous transitions from quasi-harmonic to mixed mode oscillations. Temporal patterns were stabilized by galvanodynamic sweeps at different rates. The procedure resulted in a considerable increase in the number of oscillatory cycles from 5 to 20 times, depending on the specific temporal pattern. The spontaneous drift has been associated with uncompensated oscillations, in which the coverage of some adsorbed species are not reestablished after one cycle; i.e., there is a net accumulation and/or depletion of adsorbed species during oscillations. We interpreted the rate of the galvanodynamic sweep in terms of the time scales of the poisoning processes that underlies the uncompensated oscillations and thus the spontaneous slow drift.
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
This paper analyzes empirically the effect of crude oil price change on the economic growth of Indian-Subcontinent (India, Pakistan and Bangladesh). We use a multivariate Vector Autoregressive analysis followed by Wald Granger causality test and Impulse Response Function (IRF). Wald Granger causality test results show that only India’s economic growth is significantly affected when crude oil price decreases. Impact of crude oil price increase is insignificantly negative for all three countries during first year. In second year, impact is negative but smaller than first year for India, negative but larger for Bangladesh and positive for Pakistan.