935 resultados para Technical Aggregator
Resumo:
Recent changes in comparative advantage in the largest OECD economies differ significantly from the predictions of Heckscher-Ohlin-Vanek theory. Japan's rising share of OECD machinery exports and the improvement in the comparative advantage of the USA and Germany in heavy industry were accompanied by growing scarcities of the factors used intensively in the favored sector of each country. Here we examine Acemoglu's (1998, 2002) hypothesis that technical change may be directed toward raising the marginal productivity of abundant factors. Testing this hypothesis with 1970-1992 export data from 14 OECD countries, we find evidence that international comparative advantage was reshaped by innovation biased toward the abundant factors in the largest economies.
Resumo:
UANL
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Data mining is one of the hottest research areas nowadays as it has got wide variety of applications in common man’s life to make the world a better place to live. It is all about finding interesting hidden patterns in a huge history data base. As an example, from a sales data base, one can find an interesting pattern like “people who buy magazines tend to buy news papers also” using data mining. Now in the sales point of view the advantage is that one can place these things together in the shop to increase sales. In this research work, data mining is effectively applied to a domain called placement chance prediction, since taking wise career decision is so crucial for anybody for sure. In India technical manpower analysis is carried out by an organization named National Technical Manpower Information System (NTMIS), established in 1983-84 by India's Ministry of Education & Culture. The NTMIS comprises of a lead centre in the IAMR, New Delhi, and 21 nodal centres located at different parts of the country. The Kerala State Nodal Centre is located at Cochin University of Science and Technology. In Nodal Centre, they collect placement information by sending postal questionnaire to passed out students on a regular basis. From this raw data available in the nodal centre, a history data base was prepared. Each record in this data base includes entrance rank ranges, reservation, Sector, Sex, and a particular engineering. From each such combination of attributes from the history data base of student records, corresponding placement chances is computed and stored in the history data base. From this data, various popular data mining models are built and tested. These models can be used to predict the most suitable branch for a particular new student with one of the above combination of criteria. Also a detailed performance comparison of the various data mining models is done.This research work proposes to use a combination of data mining models namely a hybrid stacking ensemble for better predictions. A strategy to predict the overall absorption rate for various branches as well as the time it takes for all the students of a particular branch to get placed etc are also proposed. Finally, this research work puts forward a new data mining algorithm namely C 4.5 * stat for numeric data sets which has been proved to have competent accuracy over standard benchmarking data sets called UCI data sets. It also proposes an optimization strategy called parameter tuning to improve the standard C 4.5 algorithm. As a summary this research work passes through all four dimensions for a typical data mining research work, namely application to a domain, development of classifier models, optimization and ensemble methods.
Resumo:
In spite of the far longed practices of technical analysis by many participants in Indian stock market, none have arrived at the exact position of technical analysis as a tool for foretelling share prices. There is no evidence supporting that one has established its definite role in predicting the behaviour of share price and also to see the extent of validity (how far reliable) of technical tools in Indian stock market. The problem is the vacuum in the arena of securities market analysis where an unrecognised tool is practised, i.e., whether to hold on to technical analysis or to drop it. Again, as already stated in this chapter, its validity need not continue forever. It may become futile as happened in developed markets. Continuous practice of a tool, which is valid only during discontinuous times is also an error. The efficacy of different market phenomena in terms of their ability to foretell the extent and direction of the price movements and reliability thereof remain as not yet proved in. This requires further study in this area so that this controversy may be settled. A solution to the problem requires enquiring and establishing the applicability of technical analysis, if any, there is in the Indian stock market. The study has the following two broad objectives for the purpose of confirming the applicability, if any, of technical analysis in the Indian stock market. The first objective is to ascertain the current validity of ‘traditional holding with respect to patterns’ and the second objective is to ascertain the ‘consistent superiority’, if any, of technical indicators over non-signal strategies in return generation. The study analyses the five patterns, which are widely known and commonly found in publications. They are: (1) Symmetrical Triangles, (2) Rising Wedges, (3) Falling Wedges, (4) Head and Shoulders Top and (5) Head and Shoulders Bottom.
Resumo:
The The The The growing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demandgrowing demand for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of for the expansion of the the the the publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system publicly funded system of education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goodof education as merit and free goods emphasized emphasized emphasized emphasized emphasized emphasized emphasized emphasized emphasized emphasized on large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation large allocation of funds on of funds on of funds on of funds on of funds on of funds on of funds on of funds on of funds on of funds on of funds for promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting educationfor promoting education. Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to . Compared to the rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of Indiathe rest of India, Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead , Kerala is far ahead in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect in this respect primarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the eprimarily because of the earlierarlierarlierarlierarlierarlier political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social political and social compulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions ofcompulsions of the state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The prethe state. The presumption of sumption of sumption of sumption of sumption of sumption of sumption of sumption of sumption of sumption of sumption of assured assured assured assured assured assured assured assured and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed and guaranteed employment in employment in employment in employment in employment in employment in employment in employment in employment in employment in employment in employment in the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East the Middle East and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other and also in other countries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased furthecountries increased further the scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher educationthe scope of higher education in KeralaKeralaKeralaKeralaKeralaKerala, particularparticularparticularparticularparticularparticularparticularparticularparticularparticularly the technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe technical educationthe
Resumo:
The present study examines the level of pure technical and scale efficiencies of cassava production system including its sub-processes (that is production and processing stages) of 278 cassava farmers/processors from three regions of Delta State, Nigeria by applying Two-Stage Data Envelopment Analysis (DEA) approach. Results reveal that pure technical efficiency (PTE) is significantly lower at the production stage 0.41 vs 0.55 for the processing stage, but scale efficiency (SE) is high at both stages (0.84 and 0.87), implying that productivity can be improved substantially by reallocation of resources and adjusting operation size. The socio-economic determinants exert differential impacts on PTE and SE at each stage. Overall, education, experience and main occupation as farmer significantly improve SE while subsistence pressure reduces it. Extension contact significantly improves SE at the processing stage but reduces PTE and SE overall. Inverse size-PTE and size-SE relationships exist in cassava production system. In other words, large/medium farms are technically and scale inefficient. Gender gap exists in performance. Male farmers are technically efficient at processing stage but scale inefficient overall. Farmers in northern region are technically efficient. Investments in education, extension services and infrastructure are suggested as policy options to improve the cassava sector in Nigeria.
Resumo:
This paper estimates a translog stochastic production function to examine the determinants of technical efficiency of freshwater prawn farming in Bangladesh. Primary data has been collected using random sampling from 90 farmers of three villages in southwestern Bangladesh. Prawn farming displayed much variability in technical efficiency ranging from 9.50 to 99.94% with mean technical efficiency of 65%, which suggested a substantial 35% of potential output can be recovered by removing inefficiency. For a land scarce country like Bangladesh this gain could help increase income and ensure better livelihood for the farmers. Based on the translog production function specification, farmers could be made scale efficient by providing more input to produce more output. The results suggest that farmers’ education and non-farm income significantly improve efficiency whilst farmers’ training, farm distance from the water canal and involvement in fish farm associations reduces efficiency. Hence, the study proposes strategies such as less involvement in farming-related associations and raising the effective training facilities of the farmers as beneficial adjustments for reducing inefficiency. Moreover, the key policy implication of the analysis is that investment in primary education would greatly improve technical efficiency.
Resumo:
Has a mixture of factual information (conventions on how a report should be structured) and motivational information on improving writing and communication skills
Resumo:
A guide to writing formal technical reports for IT and CS students
Resumo:
Handout which contains a set of links to a variety of background resources associated with the topics for a technical report coursework. Resources are clustered into three overview areas, but contain links which be used to address each of the six questions scenarios.
Resumo:
A brief coverage of the structure of a paper/report and some hints on writing and avoiding plagiarism