976 resultados para TEMPERATURE-DEPENDENCE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the order parameter for mixed-symmetry states involving a major d(x2-y2) state and various minor s-wave states (s, s(xy), and Sx2+y2) for different filling and temperature for mixing angles 0 and pi /2. We employ a two-dimensional tight-binding model incorporating second-neighbor hopping for tetragonal and orthorhombic lattice. There is mixing for the symmetric s state both on tetragonal and orthorhombic lattice. The s(xy) state mixes with the d(x2-y2) state only on orthorhombic lattice. The s(x2+y2) state never mixes with the d(x2-y2) state. The temperature dependence of the order parameters is also studied. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the solution of the gap equation for mixed order parameter symmetry states as a function of filling using a two-dimensional tight-binding model incorporating second-neighbor hopping for tetragonal and orthorhombic lattice, the principal (major) component of the order parameter is taken to be of the d(x2-y2) type, As suggested in several investigations the minor component of the order parameter is taken to be of the d(xy) type. Both the permissible mixing angles 0 and pi/2 between the two components are considered. As a function of filling pronounced maxima of d(x2-y2) order parameter is accompanied by minima of the d(xy) order parameter. At fixed filling. The temperature dependence of the two components of the order parameter is also studied in all cases. The variation of critical temperature T, with filling is also studied and T-c is found to increase with second-neighbor hopping. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this investigation, the air drying characteristics of fresh and osmotically pre-treated pineapple slices in a tray dryer were studied under different operating conditions. The air velocity varied from 1.5 to 2.5 m/s and the air temperature from 40 to 70 degreesC. The analytical solution of the second Fick's law for an infinite slab was used to calculate effective diffusion coefficients and their temperature dependence could be well represented by an Arrhenius-type equation. Comparison of the results showed that the diffusion coefficients were lower for the pre-treated fruit. By means of automatic control, it was possible to obtain drying curves under conditions of constant product temperature, which showed to be an alternative to reduce the drying time of pineapple slices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Larvae of an estuarine grapsid crab Chasmagnathus granulata Dana 1851, from temperate and subtropical regions of South America, were reared in seawater (32 ‰) at five different constant temperatures (12, 15, 18, 21, 24 °C). Complete larval development from hatching (Zoea I) to metamorphosis (Crab I) occurred in a range from 15 to 24 °C. Highest survival (60% to the first juvenile stage) was observed at 18°C, while all larvae reared at 12°C died before metamorphosis. The duration of development (D) decreased with increasing temperature (T). This relationship is described for all larval stages as a power function (linear regressions after logarithmic transformation of both D and T). The temperature-dependence of the instantaneous developmental rate (D-1) is compared among larval stages and temperatures using the Q10 coefficient (van't Hoff's equation). Through all four zoeal stages, this index tends to increase during development and to decrease with increasing T (comparing ranges 12-18, 15-21, 18-24 °C). In the Megalopa, low Q10 values were found in the range from 15 to 24 °C. In another series of experiments, larvae were reared at constant 18°C and their dry weight (W) and respiratory response to changes in T were measured in all successive stages during the intermoult period (stage C) of the moulting cycle. Both individual and weight-specific respiration (R, QO2) increased exponentially with increasing T. At each temperature, R increased significantly during growth and development through successive larval stages. No significantly different QO2 values were found in the first three zoeal stages, while a significant decrease with increasing W occurred in the Zoea IV and Megalopa. As in the temperature-dependence of D, the respiratory response to changes in temperature (Q10) depends on both the temperature range and the developmental stage, however, with different patterns. In the zoeal stages, the respiratory Q10 was minimum (1.7-2.2) at low temperatures (12-18 °C), but maximum (2.2-3.0) at 18-24 °C. The Megalopa, in contrast, showed a stronger metabolic response in the lower than in the upper temperature range (Q10 = 2.8 and 1.7, respectively). We interpret this pattern as an adaptation to a sequence of temperature conditions that should typically be encountered by C. granulata larvae during their ontogenetic migrations: hatching in and subsequent export from shallow estuarine lagoons, zoeal development in coastal marine waters, which are on average cooler, return in the Megalopa stage to warm lagoons. We thus propose that high metabolic sensitivity to changes in temperature may serve as a signal stimulating larval migration, so that the zoeae should tend to leave warm estuaries and lagoons, whereas the Megalopa should avoid remaining in the cooler marine waters and initiate its migration towards shallow coastal lagoons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization, and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical field H-c1 approximate to 2 T in NiCl2-4SC(NH2)(2). A T-3/2 behavior in the specific heat and magnetization is observed at very low temperatures at H = H-c1, which is consistent with the universality class of Bose-Einstein condensation of magnons. The temperature dependence of the thermal expansion coefficient at H-c1 shows minor deviations from the expected T-1/2 behavior. Our experimental study is complemented by analytical calculations and quantum Monte Carlo simulations, which reproduce nicely the measured quantities. We analyze the thermal and the magnetic Gruneisen parameters, which are ideal quantities to identify QCPs. Both parameters diverge at H-c1 with the expected T-1 power law. By using the Ehrenfest relations at the second-order phase transition, we are able to estimate the pressure dependencies of the characteristic temperature and field scales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ein auf Basis von Prozessdaten kalibriertes Viskositätsmodell wird vorgeschlagen und zur Vorhersage der Viskosität einer Polyamid 12 (PA12) Kunststoffschmelze als Funktion von Zeit, Temperatur und Schergeschwindigkeit angewandt. Im ersten Schritt wurde das Viskositätsmodell aus experimentellen Daten abgeleitet. Es beruht hauptsächlich auf dem drei-parametrigen Ansatz von Carreau, wobei zwei zusätzliche Verschiebungsfaktoren eingesetzt werden. Die Temperaturabhängigkeit der Viskosität wird mithilfe des Verschiebungsfaktors aT von Arrhenius berücksichtigt. Ein weiterer Verschiebungsfaktor aSC (Structural Change) wird eingeführt, der die Strukturänderung von PA12 als Folge der Prozessbedingungen beim Lasersintern beschreibt. Beobachtet wurde die Strukturänderung in Form einer signifikanten Viskositätserhöhung. Es wurde geschlussfolgert, dass diese Viskositätserhöhung auf einen Molmassenaufbau zurückzuführen ist und als Nachkondensation verstanden werden kann. Abhängig von den Zeit- und Temperaturbedingungen wurde festgestellt, dass die Viskosität als Folge des Molmassenaufbaus exponentiell gegen eine irreversible Grenze strebt. Die Geschwindigkeit dieser Nachkondensation ist zeit- und temperaturabhängig. Es wird angenommen, dass die Pulverbetttemperatur einen Molmassenaufbau verursacht und es damit zur Kettenverlängerung kommt. Dieser fortschreitende Prozess der zunehmenden Kettenlängen setzt molekulare Beweglichkeit herab und unterbindet die weitere Nachkondensation. Der Verschiebungsfaktor aSC drückt diese physikalisch-chemische Modellvorstellung aus und beinhaltet zwei zusätzliche Parameter. Der Parameter aSC,UL entspricht der oberen Viskositätsgrenze, wohingegen k0 die Strukturänderungsrate angibt. Es wurde weiterhin festgestellt, dass es folglich nützlich ist zwischen einer Fließaktivierungsenergie und einer Strukturänderungsaktivierungsenergie für die Berechnung von aT und aSC zu unterscheiden. Die Optimierung der Modellparameter erfolgte mithilfe eines genetischen Algorithmus. Zwischen berechneten und gemessenen Viskositäten wurde eine gute Übereinstimmung gefunden, so dass das Viskositätsmodell in der Lage ist die Viskosität einer PA12 Kunststoffschmelze als Folge eines kombinierten Lasersinter Zeit- und Temperatureinflusses vorherzusagen. Das Modell wurde im zweiten Schritt angewandt, um die Viskosität während des Lasersinter-Prozesses in Abhängigkeit von der Energiedichte zu berechnen. Hierzu wurden Prozessdaten, wie Schmelzetemperatur und Belichtungszeit benutzt, die mithilfe einer High-Speed Thermografiekamera on-line gemessen wurden. Abschließend wurde der Einfluss der Strukturänderung auf das Viskositätsniveau im Prozess aufgezeigt.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grand Canonical Monte Carlo simulations are used to reproduce the N₂/CO ratio ranging between 1.7 x 10⁻³ and 1.6 x 10⁻² observed in situ in the Jupiter-family comet 67 P/Churyumov-Gerasimenko (67 P) by the ROSINA mass spectrometer on board the Rosetta spacecraft. By assuming that this body has been agglomerated from clathrates in the protosolar nebula (PSN), simulations are developed using elaborated interatomic potentials for investigating the temperature dependence of the trapping within a multiple-guest clathrate formed from a gas mixture of CO and N₂ in proportions corresponding to those expected for the PSN. By assuming that 67 P agglomerated from clathrates, our calculations suggest the cometary grains must have been formed at temperatures ranging between ~ 31.8 and 69.9 K in the PSN to match the N₂/CO ratio measured by the ROSINA mass spectrometer. The presence of clathrates in Jupiter-family comets could then explain the potential N₂ depletion (factor of up to ~ 87 compared to the protosolar value) measured in 67 P/Churyumov-Gerasimenko.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over broad thermal gradients, the effect of temperature on aerobic respiration and photosynthesis rates explains variation in community structure and function. Yet for local communities, temperature dependent trophic interactions may dominate effects of warming. We tested the hypothesis that food chain length modifies the temperature-dependence of ecosystem fluxes and community structure. In a multi-generation aquatic food web experiment, increasing temperature strengthened a trophic cascade, altering the effect of temperature on estimated mass-corrected ecosystem fluxes. Compared to consumer-free and 3-level food chains, grazer-algae (2-level) food chains responded most strongly to the temperature gradient. Temperature altered community structure, shifting species composition and reducing zooplankton density and body size. Still, food chain length did not alter the temperature dependence of net ecosystem fluxes. We conclude that locally, food chain length interacts with temperature to modify community structure, but only temperature, not food chain length influenced net ecosystem fluxes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk delta 18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C-18O bond abundance, denoted by the measured parameter Delta 47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of -1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Delta 47 and growth temperature. We also find that the slope of a linear regression through all the Delta 47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Delta 47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Delta 47-temperature relationships between calcitic and aragonitic taxa.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reliability of Pb-free solder joints is controlled by their microstructural constituents. Therefore, knowledge of the solder microconstituents’ mechanical properties as a function of temperature is required. Sn-Ag-Cu lead-free solder alloy contains three phases: a Sn-rich phase, and the intermetallic compounds (IMCs) Cu6Sn5 and Ag3Sn. Typically, the Sn-rich phase is surrounded by a eutectic mixture of β-Sn, Cu6Sn5, and Ag3Sn. In this paper, we report on the Young’s modulus and hardness of the Cu6Sn5 and Cu3Sn IMCs, the β-Sn phase, and the eutectic compound, as measured by nanoindentation at elevated temperatures. For both the β-Sn phase and the eutectic compound, the hardness and Young’s modulus exhibited strong temperature dependence. In the case of the intermetallics, this temperature dependence is observed for Cu6Sn5, but the mechanical properties of Cu3Sn are more stable up to 200°C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of pressure and temperature on the energy (E-op) of the metal-to-metal charge transfer (MMCT, Fe-II --> Co-III) transition of the cyano-bridged complexes trans - [(LCoNCFe)-Co-14(CN)(5)](-) and cis-[(LCoNCFe)-Co-14(CN)(5)](-) (where L-14 = 6-methyl-1,4,8,11-tetraazacyclotetradecan-6-amine) were examined. The changes in the redox potentials of the cobalt and iron metal centres with pressure and temperature were also examined and the results interpreted with Marcus Hush theory. The observed redox reaction volumes can mainly be accounted for in terms of localised electrostriction effects. The shifts in E-op due to both pressure and temperature were found to be less than the shifts in the energy difference (E degrees) between the Co-III-Fe-II and Co-II-Fe-III redox isomers. The pressure and temperature dependence of the reorganisational energy, as well as contributions arising from the different spin states of Co-II, are discussed in order to account for this trend. To study the effect of pressure on Co-III electronic absorption bands, a new cyano-bridged complex, trans - [(LCoNCCo)-Co-14(CN)(5)], was prepared and characterised spectroscopically and structurally. X-Ray crystallography revealed this complex to be isostructural with trans -[(LCoNCFe)-Co-14(CN)(5)] center dot 5H(2)O.