926 resultados para Téléphone portable
Resumo:
The demand for high-speed data services for portable device has become a driving force for development of advanced broadband access technologies. Despite recent advances in broadband wireless technologies, there remain a number of critical issues to be resolved. One of the major concerns is the implementation of compact antennas that can operate in a wide frequency band. Spiral antenna has been used extensively for broadband applications due to its planar structure, wide bandwidth characteristics and circular polarisation. However, the practical implementation of spiral antennas is challenged by its high input characteristic impedance, relatively low gain and the need for balanced feeding structures. Further development of wideband balanced feeding structures for spiral antennas with matching impedance capabilities remain a need. This thesis proposes three wideband feeding systems for spiral antennas which are compatible with wideband array antenna geometries. First, a novel tapered geometry is proposed for a symmetric coplanar waveguide (CPW) to coplanar strip line (CPS) wideband balun. This balun can achieve the unbalanced to balanced transformation while matching the high input impedance of the antenna to a reference impedance of 50 . The discontinuity between CPW and CPS is accommodated by using a radial stub and bond wires. The bandwidth of the balun is improved by appropriately tapering the CPW line instead of using a stepped impedance transformer. Next, the tapered design is applied to an asymmetric CPW to propose a novel asymmetric CPW to CPS wideband balun. The use of asymmetric CPW does away with the discontinuities between CPW and CPS without having to use a radial stub or bond wires. Finally, a tapered microstrip line to parallel striplines balun is proposed. The balun consists of two sections. One section is the parallel striplines which are connected to the antenna, with the impedance of balanced line equal to the antenna input impedance. The other section consists of a microstrip line where the width of the ground plane is gradually reduced to eventually resemble a parallel stripline. The taper accomplishes the mode and impedance transformation. This balun has significantly improved bandwidth characteristics. Characteristics of proposed feeding structures are measured in a back-to-back configuration and compared to simulated results. The simulated and measured results show the tapered microstrip to parallel striplines balun to have more than three octaves of bandwidth. The tapered microstrip line to parallel striplines balun is integrated with a single Archimedean spiral antenna and with an array of spiral antennas. The performance of the integrated structures is simulated with the aid of electromagnetic simulation software, and results are compared to measurements. The back-to-back microstrip to parallel strip balun has a return loss of better than 10 dB over a wide bandwidth from 1.75 to 15 GHz. The performance of the microstrip to parallel strip balun was validated with the spiral antennas. The results show the balun to be an effective mean of feeding network with a low profile and wide bandwidth (2.5 to 15 GHz) for balanced spiral antennas.
Resumo:
Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for non-invasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than one minute. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers and customs checkpoints.
Resumo:
There are several popular soil moisture measurement methods today such as time domain reflectometry, electromagnetic (EM) wave, electrical and acoustic methods. Significant studies have been dedicated in developing method of measurements using those concepts, especially to achieve the characteristics of noninvasiveness. EM wave method provides an advantage because it is non-invasive to the soil and does not need to utilise probes to penetrate or bury in the soil. But some EM methods are also too complex, expensive, and not portable for the application of Wireless Sensor Networks; for example satellites or UAV (Unmanned Aerial Vehicle) based sensors. This research proposes a method in detecting changes in soil moisture using soil-reflected electromagnetic (SREM) wave from Wireless Sensor Networks (WSNs). Studies have shown that different levels of soil moisture will affects soil’s dielectric properties, such as relative permittivity and conductivity, and in turns change its reflection coefficients. The SREM wave method uses a transmitter adjacent to a WSNs node with purpose exclusively to transmit wireless signals that will be reflected by the soil. The strength from the reflected signal that is determined by the soil’s reflection coefficients is used to differentiate the level of soil moisture. The novel nature of this method comes from using WSNs communication signals to perform soil moisture estimation without the need of external sensors or invasive equipment. This innovative method is non-invasive, low cost and simple to set up. There are three locations at Brisbane, Australia chosen as the experiment’s location. The soil type in these locations contains 10–20% clay according to the Australian Soil Resource Information System. Six approximate levels of soil moisture (8, 10, 13, 15, 18 and 20%) are measured at each location; with each measurement consisting of 200 data. In total 3600 measurements are completed in this research, which is sufficient to achieve the research objective, assessing and proving the concept of SREM wave method. These results are compared with reference data from similar soil type to prove the concept. A fourth degree polynomial analysis is used to generate an equation to estimate soil moisture from received signal strength as recorded by using the SREM wave method.
Resumo:
The world is facing problems due to the effects of increased atmospheric pollution, climate change and global warming. Innovative technologies to identify, quantify and assess fluxes exchange of the pollutant gases between the Earth’s surface and atmosphere are required. This paper proposes the development of a gas sensor system for a small UAV to monitor pollutant gases, collect data and geo-locate where the sample was taken. The prototype has two principal systems: a light portable gas sensor and an optional electric–solar powered UAV. The prototype will be suitable to: operate in the lower troposphere (100-500m); collect samples; stamp time and geo-locate each sample. One of the limitations of a small UAV is the limited power available therefore a small and low power consumption payload is designed and built for this research. The specific gases targeted in this research are NO2, mostly produce by traffic, and NH3 from farming, with concentrations above 0.05 ppm and 35 ppm respectively which are harmful to human health. The developed prototype will be a useful tool for scientists to analyse the behaviour and tendencies of pollutant gases producing more realistic models of them.
Resumo:
Information Technology (IT) education is in crisis. Enrolments have dropped by up to as much as 70% at some universities (Markoff, 2009). This coupled with traditionally high attrition and failure rates (Biggers et al, 2008) is resulting in the number of graduates nationwide being far lower than industry demand (Queensland Government SkillsInfo Report, 2009). This work reports on a radical redesign of the Bachelor of IT degree at QUT. The initial results are very promising with attrition in first year dropping from being one of the highest at QUT for an undergraduate degree to being one of the lowest. The redesign followed an action research model to reflect on issues and problems with the previous version of the degree and to introduce changes to attempt to rectify some of these problems. The resulting degree intends to produce "business savvy" graduates who are capable of using their IT knowledge and skills within cross-functional teams to solve complex problems.
Resumo:
Road safety barriers are used to minimise the severity of road accidents and protect lives and property. There are several types of barrier in use today. This paper reports the initial phase of research carried out to study the impact response of portable water-filled barrier (PWFB) which has the potential to absorb impact energy and hence provide crash mitigation under low to moderate speeds. Current research on the impact and energy absorption capacity of water-filled road safety barriers is limited due to the complexity of fluid-structure interaction under dynamic impact. In this paper, a novel fluid-structure interaction method is developed based on the combination of Smooth Particle Hydrodynamics (SPH) and Finite Element Method (FEM). The sloshing phenomenon of water inside a PWFB is investigated to explore the energy absorption capacity of water under dynamic impact. It was found that water plays an important role in energy absorption. The coupling analysis developed in this paper will provide a platform to further the research in optimising the behaviour of the PWFB. The effect of the amount of water on its energy absorption capacity is investigated and the results have practical applications in the design of PWFBs.
Resumo:
Despite the significant health benefits attributed to breastfeeding, rates in countries, such as Australia, continue to remain static or to decline. Typically, the tangible support offered for women to support breastfeeding behaviours takes the form of face-to-face advice from health professionals, peer counselling via not-for-profit organizations such as the ABA, and provision of information through websites, pamphlets, and books. Prior research indicates that face-to-face support is more effective than telephone contact (Britton, McCormic, Renfrew, Wade, & King, 2009). Given the increasing costs associated with the provision of personalized face-to-face professional support and the need for some women to maximize privacy, discretion, and judgment-free consultations, there is a gap that could be filled by the use of m-technologies such as text messaging and other social media. The research team developed MumBubConnect; a two-way SMS system which combined the personalized aspects of face-to-face contact but maintained levels of privacy. The use of SMS was immediate, portable, and overcame many of the barriers associated with embarrassment. An Page 205 of 312 online survey of 130 breastfeeding mothers indicated that MumBubConnect facilitated the seeking of social support using m-technology, increased self-efficacy and maintained the desire behaviour.
Resumo:
If there is one thing performance studies graduates should be good at, it is improvising – play and improvisation are central to the contemporary and cultural performance practices we teach and the methods by which we teach them. Objective, offer, acceptance, advancing, reversing, character, status, manipulation, impression management, relationship management – whether we know them from Keith Johnson’s theatre theories or Erving Goffman’s theatre theories, the processes by which we play out a story, scenario or social situation to our own benefit are familiar. We understand that identity, action, interaction and its personal, aesthetic, professional or political outcomes are unpredictable, and that we need to adapt to changeable and uncertain circumstances to achieve our aims. Intriguingly, though, in a Higher Education environment that increasingly emphasises employability, skills in play, improvisation and self-performance are never cited as critical graduate attributes. Is the ability to play, improve and produce spontaneous new self-performances learned in the academy worth articulating into an ability to play, improvise and product spontaneous new self-performances after graduates leave the academy and move into the role of a performing arts professional in industry? A study of the career paths of our performance studies graduates over the past decade suggests that addressing the challenges they face in moving between academic culture, professional culture, industry and career in terms of improvisation and play principles may be very productive. In articles on performing arts careers, graduates are typically advised to find a market for their work, and develop career self-management, management and marketing skills, together with an ability to find, make and maintain relationships and opportunities for themselves. Transitioning to career is cast as a challenging process, requiring these skills, because performing arts careers do not offer the security, status and stability of other careers. Our data confirms this. In our study, though, we found that strategies commonly used to build the resilience, self-reliance and persistence graduates require – talking about portfolio careers, parallel careers, and portable, transferable or translatable skills, for example – can engender panic as easily as they engender confidence. In this paper, I consider what happens when we re-articulate some of the skills scholars and industry stakeholders argue are critical in allowing graduates to shift successfully from academy to industry in terms of skills like improvisation, play and self-performance that are already familiar, meaningful and much-practiced amongst performance studies graduates.
Resumo:
The increase in the availability and use of portable mobile devices has had a number of impacts on society. In particular, this impact has been seen within Higher Education Institutions where staff and students are using these devices for both simple and complex tasks. Within undergraduate teacher education courses there is an expectation that students will be fully prepared for teaching their respective areas of expertise as well as having the ability to use ICT, and in particular portable mobile devices, to support teaching and learning. This paper reports on a small case study into the use of portable mobile devices in a science unit, where the students (N=16) bring their own devices into the classroom and use them in lectures, tutorials and workshops. The study highlights the changing nature of classroom practice within the university setting and the challenges faced by teaching staff and students when using these devices.
Resumo:
Twenty first century learners operate in organic, immersive environments. A pedagogy of student-centred learning is not a recipe for rooms. A contemporary learning environment is like a landscape that grows, morphs, and responds to the pressures of the context and micro-culture. There is no single adaptable solution, nor a suite of off-the-shelf answers; propositions must be customisable and infinitely variable. They must be indeterminate and changeable; based on the creation of learning places, not restrictive or constraining spaces. A sustainable solution will be un-fixed, responsive to the life cycle of the components and materials, able to be manipulated by the users; it will create and construct its own history. Learning occurs as formal education with situational knowledge structures, but also as informal learning, active learning, blended learning social learning, incidental learning, and unintended learning. These are not spatial concepts but socio-cultural patterns of discovery. Individual learning requirements must run free and need to be accommodated as the learner sees fit. The spatial solution must accommodate and enable a full array of learning situations. It is a system not an object. Three major components: 1. The determinate landscape: in-situ concrete 'plate' that is permanent. It predates the other components of the system and remains as a remnant/imprint/fossil after the other components of the system have been relocated. It is a functional learning landscape in its own right; enabling a variety of experiences and activities. 2. The indeterminate landscape: a kit of pre-fabricated 2-D panels assembled in a unique manner at each site to suit the client and context. Manufactured to the principles of design-for-disassembly. A symbiotic barnacle like system that attaches itself to the existing infrastructure through the determinate landscape which acts as a fast growth rhizome. A carapace of protective panels, infinitely variable to create enclosed, semi-enclosed, and open learning places. 3. The stations: pre-fabricated packages of highly-serviced space connected through the determinate landscape. Four main types of stations; wet-room learning centres, dry-room learning centres, ablutions, and low-impact building services. Entirely customised at the factory and delivered to site. The stations can be retro-fitted to suit a new context during relocation. Principles of design for disassembly: material principles • use recycled and recyclable materials • minimise the number of types of materials • no toxic materials • use lightweight materials • avoid secondary finishes • provide identification of material types component principles • minimise/standardise the number of types of components • use mechanical not chemical connections • design for use of common tools and equipment • provide easy access to all components • make component size to suite means of handling • provide built in means of handling • design to realistic tolerances • use a minimum number of connectors and a minimum number of types system principles • design for durability and repeated use • use prefabrication and mass production • provide spare components on site • sustain all assembly and material information
Resumo:
This paper describes the implementation of the first portable, embedded data acquisition unit (BabelFuse) that is able to acquire and timestamp generic sensor data and trigger General Purpose I/O (GPIO) events against a microsecond-accurate wirelessly-distributed ‘global’ clock. A significant issue encountered when fusing data received from multiple sensors is the accuracy of the timestamp associated with each piece of data. This is particularly important in applications such as Simultaneous Localisation and Mapping (SLAM) where vehicle velocity forms an important part of the mapping algorithms; on fast-moving vehicles, even millisecond inconsistencies in data timestamping can produce errors which need to be compensated for. The timestamping problem is compounded in a robot swarm environment especially if non-deterministic communication hardware (such as IEEE-802.11-based wireless) and inaccurate clock synchronisation protocols are used. The issue of differing timebases makes correlation of data difficult and prevents the units from reliably performing synchronised operations or manoeuvres. By utilising hardware-assisted timestamping, clock synchronisation protocols based on industry standards and firmware designed to minimise indeterminism, an embedded data acquisition unit capable of microsecond-level clock synchronisation is presented.
Resumo:
Objectives: Smoking cessation has been shown to be an important intervention for preventing cardiovascular events and improving the health of patients with heart disease. However, unaided quit attempts in these patients often leads to high rates of failure and a return to smoking. Outpatient smoking cessation clinics using face-to-face counseling, ongoing behavioral support, advice on smoking pharmacotherapy and objective monitoring, have been found to be one of the most effective interventions for improving quit smoking rates. An outpatient smoking cessation clinic was trialed within a cardiac rehabilitation service in order to explore its effects on smoking rates for patients with or at risk of heart disease. Attendance rates to the clinic were also monitored. Methods: A descriptive exploratory design was used for this newly developed clinic. Patients who currently smoked tobacco and who had a history of either coronary artery disease, heart failure, atrial fibrillation or those seen under a chest pain assessment service were invited to an outpatient ‘Cardiac Patients Smokers Clinic’. Initially patients were offered up to 10 clinic visits over a 3 month period. Follow-up clinic visits were conducted at 3, 6 and 12 months. A portable carbon monoxide meter was used to objectively measure levels of smoking and validate smoking abstinence. Primary outcomes included rates of attendance. Results: Preliminary findings showed 24 per cent of participants (N = 6) completed all their clinic visits and remained smoke free as measured by their ongoing expired carbon monoxide readings. Clinic attendance rates appeared lowest for those with significant mental health issues such as schizophrenia or substance abuse. However, rates of attendance were improved by having an administration officer make reminder telephone calls prior to clinic visits. Conclusions: Early findings indicate the feasibility of providing a specialist smoking cessation clinic within a cardiac rehabilitation service. Further, that reminder telephone calls prior to appointments improved attendance rates in patients with heart disease to this type of clinic. However, future investigations are warranted.
Resumo:
Here we report an ultrasensitive method for detecting bio-active compounds in biological samples by means of functionalised nanoparticles interrogated by surface enhanced Raman spectroscopy (SERS). This method is applicable to the recovery and detection of many diagnostically important peptidyl analytes such as insulin, human growth hormone, growth factors (IGFs) and erythropoietin (EPO), as well as many small molecule analytes and metabolites. Our method, developed to detect EPO, demonstrates its utility in a complex yet well defined biological system. Recombinant human EPO (rhEPO) and EPO analogues have successfully been used to treat anaemia in end-stage renal failure, chronic disorders and infections, cancer and AIDS. Current methods for EPO testing are lengthy, laborious and relatively insensitive to low concentrations. In our rapid screening methodology, gold nanoparticles were functionalised with anti-EPO antibodies to provide very high selectivity towards the EPO protein in urine. These “smart sensor” nanoparticles interact with and trap EPO. Subsequent SERS screening allows for the detection and quantisation of ultra trace amounts (<<10-15 M) of EPO in urine samples with minimal sample preparation. We present data showing that the SERS spectrum differentiates between human endogenous EPO and rhEPO in unpurified urine, and potentially distinguishes between purified EPO isoforms. The elimination of sample preparation and direct screening in biological fluids significantly reduces the time required by current methods. Antibody recognition against a variety of biological targets and the availability of portable commercial SERS analysers for rapid onsite testing suggest broad diagnostic applicability in a flexible analytical platform.
Resumo:
Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, Portable Water-filled barriers (PWFB) face challenges such as large lateral displacements, tearing and breakage during impact; especially at higher speeds. This study explores the use of composite action to enhance the crashworthiness of PWFBs and enable their usage at higher speeds. Initially, energy absorption capability of water in PWFB is investigated. Then, composite action of the PWFB with the introduction of steel frame is considered to evaluate its enhanced impact performance. Findings of the study show that the initial height of the impact must be lower than the free surface level of water in a PWFB in order for the water to provide significant crash energy absorption. In general, an impact of a road barrier with 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacements and sloshing response. Information from this research will aid in the design of new generation roadside safety structures aimed to increase safety in modern roadways.
Resumo:
The assessment of skin temperature (Tsk) in athletic therapy and sports medicine research is an extremely important physiological outcome measure.Various methodsof recording Tsk, including thermistors, thermocouples and thermocrons are currently being used for research purposes. These techniques are constrained by their wires limiting the freedom of the subject, slow response times, and/or sensors falling off. Furthermore, as these products typically are directly attached to the skin and cover the measurement site, their validity may be questionable.This manuscript addresses the use and potential benefits of using thermal imaging (TI) in sport medicine research.Non-contact infrared TI offers a quick, non-invasive, portable and athlete-friendly method of assessing Tsk. TI is a useful Tsk diagnostic tool that has potential to be an integral part of sport medicine research in the future. Furthermore, as the technique is non-contact it has several advantages over existing methods of recording skin temperature