886 resultados para Systems Simulation
Resumo:
Nowadays, many of the manufactory and industrial system has a diagnosis system on top of it, responsible for ensuring the lifetime of the system itself. It achieves this by performing both diagnosis and error recovery procedures in real production time, on each of the individual parts of the system. There are many paradigms currently being used for diagnosis. However, they still fail to answer all the requirements imposed by the enterprises making it necessary for a different approach to take place. This happens mostly on the error recovery paradigms since the great diversity that is nowadays present in the industrial environment makes it highly unlikely for every single error to be fixed under a real time, no production stop, perspective. This work proposes a still relatively unknown paradigm to manufactory. The Artificial Immune Systems (AIS), which relies on bio-inspired algorithms, comes as a valid alternative to the ones currently being used. The proposed work is a multi-agent architecture that establishes the Artificial Immune Systems, based on bio-inspired algorithms. The main goal of this architecture is to solve for a resolution to the error currently detected by the system. The proposed architecture was tested using two different simulation environment, each meant to prove different points of views, using different tests. These tests will determine if, as the research suggests, this paradigm is a promising alternative for the industrial environment. It will also define what should be done to improve the current architecture and if it should be applied in a decentralised system.
Resumo:
This paper presents a three-phase three-level fast battery charger for electric vehicles (EVs) based in a current-source converter (CSC). Compared with the traditional voltage-source converters used for fast battery chargers, the CSC can be seen as a natural buck-type converter, i.e., the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. Moreover, using the CSC it is not necessary to use a dc-dc back-end converter in the battery side, and it is also possible to control the grid current in order to obtain a sinusoidal waveform, and in phase with the power grid voltage (unitary power factor). Along the paper is described in detail the proposed CSC for EVs fast battery charging systems: the circuit topology, the power control theory, the current control strategy and the grid synchronization algorithm. Several simulation results of the EV fast battery charger operating with a maximum power of 50 kW are presented.
Resumo:
In this work, we present a 3D web-based interactive tool for numerical modeling and simulation approach to breast reduction surgery simulation, to assist surgeons in planning all aspects related to breast reduction surgery before the actual procedure takes place, thereby avoiding unnecessary risks. In particular, it allows the modeling of the initial breast geometry, the definition of all aspects related to the surgery and the visualization of the post-surgery breast shape in a realistic environment.
Resumo:
"Series Title: IFIP - The International Federation for Information Processing, ISSN 1868-4238"
Resumo:
Publicado em "Information control in manufacturing 1998 : (INCOM'98) : advances in industrial engineering : a proceedings volume from the 9th IFAC Symposium, Nancy-Metz, France, 24-26 June 1998. Vol. 2"
Resumo:
Electromagnetic compatibility, lightning, crosstalk surge voltages, Monte Carlo simulation, accident initiator
Resumo:
Nowadays, many of the health care systems are large and complex environments and quite dynamic, specifically Emergency Departments, EDs. It is opened and working 24 hours per day throughout the year with limited resources, whereas it is overcrowded. Thus, is mandatory to simulate EDs to improve qualitatively and quantitatively their performance. This improvement can be achieved modelling and simulating EDs using Agent-Based Model, ABM and optimising many different staff scenarios. This work optimises the staff configuration of an ED. In order to do optimisation, objective functions to minimise or maximise have to be set. One of those objective functions is to find the best or optimum staff configuration that minimise patient waiting time. The staff configuration comprises: doctors, triage nurses, and admissions, the amount and sort of them. Staff configuration is a combinatorial problem, that can take a lot of time to be solved. HPC is used to run the experiments, and encouraging results were obtained. However, even with the basic ED used in this work the search space is very large, thus, when the problem size increases, it is going to need more resources of processing in order to obtain results in an acceptable time.
Resumo:
This paper presents the Juste-Neige system for predicting the snow height on the ski runs of a resort using a multi-agent simulation software. Its aim is to facilitate snow cover management in order to i) reduce the production cost of artificial snow and to improve the profit margin for the companies managing the ski resorts; and ii) to reduce the water and energy consumption, and thus to reduce the environmental impact, by producing only the snow needed for a good skiing experience. The software provides maps with the predicted snow heights for up to 13 days. On these maps, the areas most exposed to snow erosion are highlighted. The software proceeds in three steps: i) interpolation of snow height measurements with a neural network; ii) local meteorological forecasts for every ski resort; iii) simulation of the impact caused by skiers using a multi-agent system. The software has been evaluated in the Swiss ski resort of Verbier and provides useful predictions.
Resumo:
BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.
Resumo:
Miralls deformables més i més grans, amb cada cop més actuadors estan sent utilitzats actualment en aplicacions d'òptica adaptativa. El control dels miralls amb centenars d'actuadors és un tema de gran interès, ja que les tècniques de control clàssiques basades en la seudoinversa de la matriu de control del sistema es tornen massa lentes quan es tracta de matrius de dimensions tan grans. En aquesta tesi doctoral es proposa un mètode per l'acceleració i la paral.lelitzacó dels algoritmes de control d'aquests miralls, a través de l'aplicació d'una tècnica de control basada en la reducció a zero del components més petits de la matriu de control (sparsification), seguida de l'optimització de l'ordenació dels accionadors de comandament atenent d'acord a la forma de la matriu, i finalment de la seva posterior divisió en petits blocs tridiagonals. Aquests blocs són molt més petits i més fàcils de fer servir en els càlculs, el que permet velocitats de càlcul molt superiors per l'eliminació dels components nuls en la matriu de control. A més, aquest enfocament permet la paral.lelització del càlcul, donant una com0onent de velocitat addicional al sistema. Fins i tot sense paral. lelització, s'ha obtingut un augment de gairebé un 40% de la velocitat de convergència dels miralls amb només 37 actuadors, mitjançant la tècnica proposada. Per validar això, s'ha implementat un muntatge experimental nou complet , que inclou un modulador de fase programable per a la generació de turbulència mitjançant pantalles de fase, i s'ha desenvolupat un model complert del bucle de control per investigar el rendiment de l'algorisme proposat. Els resultats, tant en la simulació com experimentalment, mostren l'equivalència total en els valors de desviació després de la compensació dels diferents tipus d'aberracions per als diferents algoritmes utilitzats, encara que el mètode proposat aquí permet una càrrega computacional molt menor. El procediment s'espera que sigui molt exitós quan s'aplica a miralls molt grans.
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
Earthquakes occurring around the world each year cause thousands ofdeaths, millions of dollars in damage to infrastructure, and incalculablehuman suffering. In recent years, satellite technology has been asignificant boon to response efforts following an earthquake and itsafter-effects by providing mobile communications between response teamsand remote sensing of damaged areas to disaster management organizations.In 2007, an international team of students and professionals assembledduring theInternational Space University’s Summer Session Program in Beijing, Chinato examine how satellite and ground-based technology could be betterintegrated to provide an optimised response in the event of an earthquake.The resulting Technology Resources for Earthquake MOnitoring and Response(TREMOR) proposal describes an integrative prototype response system thatwill implement mobile satellite communication hubs providing telephone anddata links between response teams, onsite telemedicine consultation foremergency first-responders, and satellite navigation systems that willlocate and track emergency vehicles and guide search-and-rescue crews. Aprototype earthquake simulation system is also proposed, integratinghistorical data, earthquake precursor data, and local geomatics andinfrastructure information to predict the damage that could occur in theevent of an earthquake. The backbone of these proposals is a comprehensiveeducation and training program to help individuals, communities andgovernments prepare in advance. The TREMOR team recommends thecoordination of these efforts through a centralised, non-governmentalorganization.
Resumo:
Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes.Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
Resumo:
Background: To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results: To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions: We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.