972 resultados para Symmetric Quantum-mechanics
Resumo:
First-principles quantum-mechanical techniques, based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models for Ba0.5Sr 0.5TiO3. Electronic properties are analyzed and the relevance of the present theoretical and experimental results on the photoluminescence behavior is discussed. The presence of localized electronic levels in the band gap, due to the symmetry break, would be responsible for the visible photoluminescence of the amorphous state at room temperature. Thin films were synthesized following a soft chemical processing. Their structure was confirmed by x-ray data and the corresponding photoluminescence properties measured.
Resumo:
In this work a review of the supersymmetric quantum mechanics formalism combined with the variational method is done. This approach is useful in order to obtain numerical values for the energy eigenvalues from Schrödinger equation. As an example, the energy eigenvalues from the Lennard-Jones (12,6) potential are determined and the results are compared with other ones obtained from different methods. Copyright by the Sociedade Brasileira de Física.
Resumo:
Due to its underlying gauge structure, teleparallel gravity achieves a separation between inertial and gravitational effects. It can, in consequence, describe the isolated gravitational interaction without resorting to the equivalence principle, and is able to provide a tensorial definition for the energy-momentum density of the gravitational field. Considering the conceptual conflict between the local equivalence principle and the nonlocal uncertainty principle, the replacement of general relativity by its teleparallel equivalent can be considered an important step towards a prospective reconciliation between gravitation and quantum mechanics. © 2006 American Institute of Physics.
Resumo:
In this work we investigate a possible magnetic moment generation for massive neutral particles with spins-1 and -2 coupled non-minimally, in a specific way, to an external electromagnetic field. It is found that, in the nonrelativistic limit, these particles present g = 1. This result, worked out in the framework of Relativistic Quantum Mechanics, seems to suggest that g = 1 for all massive and neutral particles of any spin ≤ 2. We also compare with the results obtained for massive charged particles of spins-1 and -2, in the same regime (nonrelativistic), in order to investigate the role played by the spin separetely from the charge. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)