700 resultados para Surrogate
Resumo:
Gentamicin is an aminoglycoside antibiotic commonly used for treating Pseudomonas infections, but its use is limited by a relatively short half-life. In this investigation, developed a controlled-release gentamicin formulation using poly(lactide-co-glycolide) (PLGA) nanoparticles. We demonstrate that entrapment of the hydrophilic drug into a hydrophobic PLGA polymer can be improved by increasing the pH of the formulation, reducing the hydrophilicity of the drug and thus enhancing entrapment, achieving levels of up to 22.4 µg/mg PLGA. Under standard incubation conditions, these particles exhibited controlled release of gentamicin for up to 16 days. These particles were tested against both planktonic and biofilm cultures of P. aeruginosa PA01 in vitro, as well as in a 96-hour peritoneal murine infection model. In this model, the particles elicited significantly improved antimicrobial effects as determined by lower plasma and peritoneal lavage colony-forming units and corresponding reductions of the surrogate inflammatory indicators interleukin-6 and myeloperoxidase compared to free drug administration by 96 hours. These data highlight that the controlled release of gentamicin may be applicable for treating Pseudomonas infections.
Resumo:
Gene expression data can provide a very rich source of information for elucidating the biological function on the pathway level if the experimental design considers the needs of the statistical analysis methods. The purpose of this paper is to provide a comparative analysis of statistical methods for detecting the differentially expression of pathways (DEP). In contrast to many other studies conducted so far, we use three novel simulation types, producing a more realistic correlation structure than previous simulation methods. This includes also the generation of surrogate data from two large-scale microarray experiments from prostate cancer and ALL. As a result from our comprehensive analysis of 41,004 parameter configurations, we find that each method should only be applied if certain conditions of the data from a pathway are met. Further, we provide method-specific estimates for the optimal sample size for microarray experiments aiming to identify DEP in order to avoid an underpowered design. Our study highlights the sensitivity of the studied methods on the parameters of the system. © 2012 Tripahti and Emmert-Streib.
Resumo:
Three endemic vulture species Gyps bengalensis, Gyps indicus and Gyps tenuirostris are critically endangered following dramatic declines in South Asia resulting from exposure to diclofenac, a veterinary drug present in the livestock carcasses that they scavenge. Diclofenac is widely used globally and could present a risk to Gyps species from other regions. In this study, we test the toxicity of diclofenac to a Eurasian (Gyps fulvus) and an African (Gyps africanus) species, neither of which is threatened. A dose of 0.8 mg kg(-1) of diclofenac was highly toxic to both species, indicating that they are at least as sensitive to diclofenac as G. bengalensis, for which we estimate an LD50 of 0.1-0.2 mg kg(-1). We suggest that diclofenac is likely to be toxic to all eight Gyps species, and that G. africanus, which is phylogenetically close to G. bengalensis, would be a suitable surrogate for the safety testing of alternative drugs to diclofenac.
Resumo:
Burkholderia species RASC and Pseudomonas fluorescens were marked with lux genes, encoding for bioluminescence and used to assess the toxicity of mono-, di- and tri-chlorophenols by determining the decline in bioluminescence following exposure to the compounds in aqueous solution. Toxicity was expressed as a 50% effective concentration value (EC50, equating to the concentration of compound which caused a 50% decline in bioluminescence. Comparing the toxicity values of the compounds showed that, in general, increasing the degree of chlorination, increased toxicity. By carrying out forward multiple linear regressions with log10 EC50 values and physio-chemical descriptors, it was shown that molecular parameters describing the hydrogen bonding nature of a chlorophenol provided a better fit than regressions between toxicity data and log10 Kow alone. Utilising these descriptor variables in equations, it was shown that the toxicity of chlorophenols to the lux marked bacteria could be predicted from the compounds physio-chemical characteristics. By correlating lux marked RASC c2 and P. fluorescens EC50 values with toxicity values using Pimephales promelas (fathead minnow), Tetrahymena pyriformis (ciliate) and marine bacterium Vibriofischeri, it was apparent that lux marked RASC c2 correlated well with the freshwater aquatic species (P. promelas and T. pyriformis). This implied that for predictions of toxicity of organic xenobiotic compounds to higher organisms, lux marked RASC c2 could be utilised as a rapid surrogate.
Resumo:
In patients with cystic fibrosis (CF), clinical trials are of paramount importance. Here, the current status of drug development in CF is discussed and future directions highlighted. Methods for pre-clinical testing of drugs with potential activity in CF patients including relevant animal models are described. Study design options for phase II and phase III studies involving CF patients are provided, including required patient numbers, safety issues and surrogate end point parameters for drugs, tested for different disease manifestations. Finally, regulatory issues for licensing new therapies for CF patients are discussed, including new directives of the European Union and the structure of a European clinical trial network for clinical studies involving CF patients is proposed.
Resumo:
Biomarkers are conventionally defined as "biological molecules that represent health and disease states." They typically are measured in readily available body fluids (blood or urine), lie outside the causal pathway, are able to detect subclinical disease, and are used to monitor clinical and subclinical disease burden and response to treatments. Biomarkers can be "direct" endpoints of the disease itself, or "indirect" or surrogate endpoints. New technologies (such as metabolomics, proteomics, genomics) bring a wealth of opportunity to develop new biomarkers. Other new technologies enable the development of nonmolecular, functional, or biophysical tissue-based biomarkers. Diabetes mellitus is a complex disease affecting almost every tissue and organ system, with metabolic ramifications extending far beyond impaired glucose metabolism. Biomarkers may reflect the presence and severity of hyperglycemia (ie, diabetes itself) or the presence and severity of the vascular complications of diabetes. Illustrative examples are considered in this brief review. In blood, hemoglobin A1c (HbA1c) may be considered as a biomarker for the presence and severity of hyperglycemia, implying diabetes or prediabetes, or, over time, as a "biomarker for a risk factor," ie, hyperglycemia as a risk factor for diabetic retinopathy, nephropathy, and other vascular complications of diabetes. In tissues, glycation and oxidative stress resulting from hyperglycemia and dyslipidemia lead to widespread modification of biomolecules by advanced glycation end products (AGEs). Some of these altered species may serve as biomarkers, whereas others may lie in the causal pathway for vascular damage. New noninvasive technologies can detect tissue damage mediated by AGE formation: these include indirect measures such as pulse wave analysis (a marker of vascular dysfunction) and more direct markers such as skin autofluorescence (a marker of long-term accumulation of AGEs). In the future, we can be optimistic that new blood and tissue-based biomarkers will enable the detection, prevention, and treatment of diabetes and its complications long before overt disease develops.
Resumo:
The Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications(EDIC) studies have established multiyear mean hemoglobin A1c (HbA1c) as predictive of microvascular complications in persons with type 1 diabetes. However, multiyear mean HbA1c is not always available in the clinical setting. Skin advanced glycation end products (AGEs) are thought to partially reflect effects of hyperglycemia over time, and measurement of skin AGEs might be a surrogate for multiyear mean HbA1c. As certain AGEs fluoresce and skin fluorescence has been demonstrated to correlate with the concentration of skin AGEs, noninvasive measurement by skin intrinsic fluorescence(SIF) facilitates the exploration of the association of mean HbA1c and other clinical/technical factors with SIF using the detailed phenotypic database available in DCCT/EDIC.
Resumo:
Emerging science supports therapeutic roles of strawberries, blueberries, and cranberries in metabolic syndrome, a prediabetic state characterized by several cardiovascular risk factors. Interventional studies reported by our group and others have demonstrated the following effects: strawberries lowering total and LDL-cholesterol, but not triglycerides, and decreasing surrogate biomarkers of atherosclerosis (malondialdehyde and adhesion molecules); blueberries lowering systolic and diastolic blood pressure and lipid oxidation and improving insulin resistance; and low-calorie cranberry juice selectively decreasing biomarkers of lipid oxidation (oxidized LDL) and inflammation (adhesion molecules) in metabolic syndrome. Mechanistic studies further explain these observations as up-regulation of endothelial nitric oxide synthase activity, reduction in renal oxidative damage, and inhibition of the activity of carbohydrate digestive enzymes or angiotensin-converting enzyme by these berries. These findings need confirmation in future studies with a focus on the effects of strawberry, blueberry, or cranberry intervention in clinical biomarkers and molecular mechanisms underlying the metabolic syndrome.
Resumo:
Cranberries, high in polyphenols, have been associated with several cardiovascular health benefits, although limited clinical trials have been reported to validate these findings. We tested the hypothesis that commercially available low-energy cranberry juice (Ocean Spray Cranberries, Inc, Lakeville-Middleboro, Mass) will decrease surrogate risk factors of cardiovascular disease, such as lipid oxidation, inflammation, and dyslipidemia, in subjects with metabolic syndrome. In a randomized, double-blind, placebo-controlled trial, participants identified with metabolic syndrome (n = 15-16/group) were assigned to 1 of 2 groups: cranberry juice (480 mL/day) or placebo (480 mL/day) for 8 weeks. Anthropometrics, blood pressure measurements, dietary analyses, and fasting blood draws were conducted at screen and 8 weeks of the study. Cranberry juice significantly increased plasma antioxidant capacity (1.5 ± 0.6 to 2.2 ± 0.4 µmol/L [means ± SD], P <.05) and decreased oxidized low-density lipoprotein and malondialdehyde (120.4 ± 31.0 to 80.4 ± 34.6 U/L and 3.4 ± 1.1 to 1.7 ± 0.7 µmol/L, respectively [means ± SD], P <.05) at 8 weeks vs placebo. However, cranberry juice consumption caused no significant improvements in blood pressure, glucose and lipid profiles, C-reactive protein, and interleukin-6. No changes in these parameters were noted in the placebo group. In conclusion, low-energy cranberry juice (2 cups/day) significantly reduces lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome.
Resumo:
The chronic vascular complications of diabetes (nephropathy, retinopathy and accelerated atherosclerosis) are a major cause of morbidity and premature mortality. In spite of the more widespread availability of intensive diabetes management, approximately one in three people with diabetes develop aggressive complications and over 70% die of atherosclerosis-related diseases. Genetic and acquired factors are likely to be contributory. Potential mediators of vascular damage may include the interrelated processes of lipoprotein abnormalities, glycation, oxidation and endothelial dysfunction. Lipoprotein abnormalities encompass alterations in lipid concentrations, lipoprotein composition and subclass distribution and lipoprotein-related enzymes. Nonenzymatic glycation and oxidative damage to lipoproteins, other proteins and to vascular structures may also be deleterious. As atherosclerosis is a chronic condition commencing in youth, and because clinical events may be silent in diabetes, surrogate measures of vascular disease are important for early identification of diabetic patients with or at high risk of vascular damage, and for monitoring efficacy of interventions. The increasing array of biochemical assays for markers and mediators of vascular damage, noninvasive measures of vascular health, and therapeutic options should enable a reduction in the excessive personal and economic burden of vascular disease in type 1 and type 2 diabetes.
Resumo:
Modified lipoproteins induce autoimmune responses including the synthesis of autoantibodies with pro-inflammatory characteristics. Circulating modified lipoprotein autoantibodies combine with circulating antigens and form immune complexes (IC). We now report the results of a study investigating the role of circulating IC containing modified lipoproteins in the progression of carotid intima-media thickness (IMT) in patients enrolled in the Epidemiology of Diabetes Interventions and Complications (EDIC) Trial, a follow-up study of the Diabetes Control and Complications Trial (DCCT). This cohort includes 1229 patients with type 1 diabetes in whom B-mode ultrasonography of internal and common carotid arteries was performed in 1994-1996 and in 1998-2000. Conventional CHD risk factors, antibodies against modified forms of LDL and modified lipoprotein IC were determined in 1050 of these patients from blood collected in 1996-1998. Cholesterol and apolipoprotein B content of IC (surrogate markers of modified ApoB-rich lipoproteins) were significantly higher in patients who showed progression of the internal carotid IMT than in those showing no progression, regression or mild progression. Multivariate linear and logistic regression modeling using conventional and non-conventional risk factors showed that the cholesterol content of IC was a significant positive predictor of internal carotid IMT progression. In conclusion these data demonstrate that increased levels of modified ApoB-rich IC are associated with increased progression of internal carotid IMT in the DCCT/EDIC cohort of type 1 diabetes.
Resumo:
Epithelia play important immunological roles at a variety of mucosal sites. We examined NFkappaB activity in control and TNF-alpha treated bovine mammary epithelial monolayers (BME-UV cells). A region of the bovine IL-8 (bIL-8) promoter was sequenced and a putative kappaB consensus sequence was identified bioinformatically. We used this sequence to analyse nuclear extracts for IL-8 specific NFkappaB activity. As a surrogate marker of NFkappaB activation, we investigated IL-8 release in two models. Firstly in BME-UV monolayers, IL-8 release in the presence of pro- and anti-inflammatory agents was determined by enzyme-linked immunosorbent assay (ELISA). Secondly, we measured IL-8 secretion from a novel model of intact mucosal sheets of bovine teat sinus. IL-8 release into bathing solutions was assessed following treatment with pro- and anti-inflammatory agents. TNF-alpha enhanced NFkappaB activity in bovine mammary epithelial monolayers. p65 NFkappaB homodimer was identified in both control and TNF-alpha treated cells. Novel sequencing of the bovine IL-8 promoter identified a putative kappaB consensus sequence, which specifically bound TNF-alpha inducible p50/p65 heterodimer. TNF-alpha induced primarily serosal IL-8 release in the cell culture model. Pre-treatment with anti-TNF or dexamethasone inhibited TNF-alpha induced IL-8 release. High dose interleukin-1beta (IL-1beta) induced IL-8 release, however significantly less potently than TNF-alpha. Bovine mammary mucosal tissue released high basal levels of IL-8 which were unaffected by TNF-alpha or IL-1beta but inhibited by both dexamethasone and anti-TNF. These data support a role for TNF-alpha in activation of NFkappaB and release of IL-8 from bovine mammary epithelial cells.
Resumo:
AimsThe main aim of this study was to determine the virucidal inactivation efficacy of an in-house-designed atmospheric pressure, nonthermal plasma jet operated at varying helium/oxygen feed gas concentrations against MS2 bacteriophage, widely employed as a convenient surrogate for human norovirus.
Methods and ResultsThe effect of variation of percentage oxygen concentration in the helium (He) carrier gas was studied and found to positively correlate with MS2 inactivation rate, indicating a role for reactive oxygen species (ROS) in viral inactivation. The inactivation rate constant increased with increasing oxygen concentrations up to 075% O-2. 3 log(10) (999%) reductions in MS2 viability were achieved after 3min of exposure to the plasma source operated in a helium/oxygen (9925%:075%) gas mixture, with >7 log(10) reduction after 9min exposure.
ConclusionsAtmospheric pressure, nonthermal plasmas may have utility in the rapid disinfection of virally contaminated surfaces for infection control applications.
Significance and Impact of StudyThe atmospheric pressure, nonthermal plasma jet employed in this study exhibits rapid virucidal activity against a norovirus surrogate virus, the MS2 bacteriophage, which is superior to previously published inactivation rates for chemical disinfectants.
Resumo:
Nonadherence to prescribed treatment is an important cause of difficult asthma. Rates of nonadherence amongst asthmatic patients have been shown to range between 30% and 70%. This is associated with poor health care outcomes and increased health care costs. There is no such thing as a "typical" nonadherent patient. The reasons driving nonadherence are multifactorial. Furthermore, adherence is a variable behavior and not a trait characteristic. Adherence rates can vary between the same individual across treatments for different conditions. There is no consistent link between socioeconomic status and nonadherence, and although some studies have shown that nonadherence is more common amongst females, this is not a universal finding. The commonly held perception that better adherence is driven by greater disease severity has been demonstrated to not be the case, in both pediatric and adult patients. Identification of nonadherence is the first step. If adherence is not checked, it is likely that poor adherence will be labeled as refractory disease. Failure to identify poor adherence may lead to inappropriate escalation of therapy, including the potential introduction of complex biological therapies. Surrogate measures, such as prescription counting, are not infallible. Nonadherence can be difficult to identify in clinical practice, and a systematic approach using a variety of tools is required. Nonadherence can be successfully addressed. Therefore, assessment of adherence is of paramount importance in difficult asthma management, in order to reduce exacerbations and steroid-related side effects as well as hospital and intensive care admissions, health care cost, and inappropriate treatment escalation. In this paper, we present an overview of the literature surrounding nonadherence in difficult asthma. We explore the facts and myths surrounding the factors driving nonadherence as well as how it can be identified and addressed.
Resumo:
The ECFS-CTN Standardisation Committee has undertaken this review of lung clearance index as part of the group's work on evaluation of clinical endpoints with regard to their use in multicentre clinical trials in CF. The aims were 1) to review the literature on reliability, validity and responsiveness of LCI in patients with CF, 2) to gain consensus of the group on feasibility of LCI and 3) to gain consensus on answers to key questions regarding the promotion of LCI to surrogate endpoint status. It was concluded that LCI has an attractive feasibility and clinimetric properties profile and is particularly indicated for multicentre trials in young children with CF and patients with early or mild CF lung disease. This is the first article to collate the literature in this manner and support the use of LCI in clinical trials in CF.