883 resultados para Super-conducting coils
Resumo:
AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors are currently investigating the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in coils made from YBCO superconductors. In this paper, a 2D finite element model based on the H formulation is introduced. The model is then used to calculate the transport AC loss using both a bulk approximation and modeling the individual turns in a racetrack-shaped coil. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's superconducting permanent magnet synchronous motor design. The transport AC loss of a stator coil is measured using an electrical method based on inductive compensation using a variable mutual inductance. The simulated results are compared with the experimental results, verifying the validity of the model, and ways to improve the accuracy of the model are discussed. © 2010 IEEE.
Resumo:
The by-catch from the shrimp trawl fishery in Kalpitiya is mainly used for the production of dried fish, which provides an additional source of income for fishermen in the area. It has been observed that current handling practices along the value addition chain are responsible for the poor quality and low price of the end product. This study was aimed at identifying the shortcomings in such handling practices by fishermen and dried fish producers and assessing the quality of shrimp fishery by-catch along the processing chain in order to recommend more efficient utilization methods that will improve the quality of the end product. Fresh fish, dried fish and harbour water samples were tested for total coli forms, faecal coliforms, E. coli and Salmonella in order to assess their microbial quality: In addition, standard plate counts (SPC) of fish samples were also carried out. A survey was carried out from July-October 2006 at Kalpitiya, using a pre-tested questionnaire to collect information from individuals who have been engaged in dried fish processing. Average values obtained for freshly landed and dried fish respectively, were, SPC 9.88x10 super(5) CFU/g and 30.43x10 super(5) CFU/g, total coliforms 23.05 and 24.23 MPN/g and fecal coliforms 8.28 and 9.00 MPN/g. These values exceed the recommendations in the SL standards. A quarter of the landed fresh fish and 38% of dried fish from the producers were positive for E. coli and thus failed to show required end product quality. SPC of harbour water was 14.35x10 super(6) CFU/ml and all samples were found to be contaminated with E. coli. None of the fishermen and dried fish producers were satisfied with the quality of the end product. The reasons for poor quality as indicated by them were: limited availability of ice (75%), lack of infrastructure facilities (65%), uncertainty of markets (52%), lack of emphasis on quality (47%) and poor access to available technologies (41%). Respondents to the questionnaire also identified: unavailability of potable water, insulated boxes, good landing jetty, racks for drying fish, poor cold storage facilities and limitations in dried fish storage facilities, as further factors leading to the loss of quality in their products. Results demonstrate that improvements to the infrastructure facilities and conducting of proper awareness programmes on handling practices could lead for improvements in the quality of value added products prepared from the shrimp fishery by-catch at Kalpitiya.
Resumo:
Super-Resolution imaging techniques such as Fluorescent Photo-Activation Localisation Microscopy (FPALM) have created a powerful new toolkit for investigating living cells, however a simple platform for growing, trapping, holding and controlling the cells is needed before the approach can become truly widespread. We present a microfluidic device formed in polydimethylsiloxane (PDMS) with a fluidic design which traps cells in a high-density array of wells and holds them very still throughout the life cycle, using hydrodynamic forces only. The device meets or exceeds all the necessary criteria for FPALM imaging of Schizosaccharomyces pombe and is designed to remain flexible, robust and easy to use. © 2011 IEEE.
Resumo:
Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil. © 2011 American Institute of Physics.
Resumo:
Electrical double-layer capacitors owe their large capacitance to the formation of a double-layer at the electrode/electrolyte interface of high surface area carbon-based electrode materials. Greater electrical energy storage capacity has been attributed to transition metal oxides/nitrides that undergo fast, reversible redox reactions at the electrode surface (pseudo-capacitive behavior) in addition to forming electrical double-layers. Solution Precursor Plasma Spray (SPPS) has shown promise for depositing porous, high surface area transition metal oxides. This investigation explored the potential of SPPS to fabricate a-MoO 3 coatings with micro-structures suitable for use as super-capacitor electrodes. The effects of number of spray passes, spray distance, solution concentration, flow rate and spray velocity on the chemistry and micro-structure of the a-MoO 3 deposits were examined. DTA/TGA, SEM, XRD, and electrochemical analyses were performed to characterize the coatings. The results demonstrate the importance of post-deposition heating of the deposit by subsequent passes of the plasma on the coating morphology. © ASM International.
Resumo:
This paper presents the modeling of second generation (2 G) high-temperature superconducting (HTS) pancake coils using finite element method. The axial symmetric model can be used to calculate current and magnetic field distribution inside the coil. The anisotropic characteristics of 2 G tapes are included in the model by direct interpolation. The model is validated by comparing to experimental results. We use the model to study critical currents of 2 G coils and find that 100μV/m is too high a criterion to determine long-term operating current of the coils, because the innermost turns of a coil will, due to the effect of local magnetic field, reach their critical current much earlier than outer turns. Our modeling shows that an average voltage criterion of 20μV/m over the coil corresponds to the point at which the innermost turns' electric field exceeds 100μV/m. So 20μV/m is suggested to be the critical current criterion of the HTS coil. The influence of background field on the coil critical current is also studied in the paper. © 2012 American Institute of Physics.
Resumo:
This paper begins with introducing the winding techniques of two superconducting double-pancake coils wound using 2G coated conductors. These winding techniques are able to guarantee a good performance for the superconducting coils. Then the coil critical currents were measured and compared with a simulation model. The results were consistent. Finally the coil AC losses were measured using an experimental circuit including a compensation coil. The simulation results are close to the experiment results. © 2010 IEEE.
Resumo:
It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils. © 2012 American Institute of Physics.
Resumo:
In this paper, the use of magnetic materials to divert flux in high-temperature superconductor superconducting coils and reduce transport ac loss is investigated. This particular technique is preferred over other techniques, such as striation, Roebel transposition, and twisted wires because it does not require modification to the conductor itself, which can be detrimental to the properties of the superconductor. The technique can also be implemented for existing coils. The analysis is carried out using a coil model based on the H formulation and implemented in comsol multiphysics. Both weakly and strongly magnetic materials are investigated, and it is shown that the use of such materials can divert flux and achieve a reduction in transport ac loss, which, in some cases, is quite significant. This analysis acts to provide a foundation for further optimization and experimental work in the future. © 2011 IEEE.