930 resultados para Sulphur Chemistry
Resumo:
In general, laboratory activities are costly in terms of time, space, and money. As such, the ability to provide realistically simulated laboratory data that enables students to practice data analysis techniques as a complementary activity would be expected to reduce these costs while opening up very interesting possibilities. In the present work, a novel methodology is presented for design of analytical chemistry instrumental analysis exercises that can be automatically personalized for each student and the results evaluated immediately. The proposed system provides each student with a different set of experimental data generated randomly while satisfying a set of constraints, rather than using data obtained from actual laboratory work. This allows the instructor to provide students with a set of practical problems to complement their regular laboratory work along with the corresponding feedback provided by the system's automatic evaluation process. To this end, the Goodle Grading Management System (GMS), an innovative web-based educational tool for automating the collection and assessment of practical exercises for engineering and scientific courses, was developed. The proposed methodology takes full advantage of the Goodle GMS fusion code architecture. The design of a particular exercise is provided ad hoc by the instructor and requires basic Matlab knowledge. The system has been employed with satisfactory results in several university courses. To demonstrate the automatic evaluation process, three exercises are presented in detail. The first exercise involves a linear regression analysis of data and the calculation of the quality parameters of an instrumental analysis method. The second and third exercises address two different comparison tests, a comparison test of the mean and a t-paired test.
Resumo:
This paper summarizes the misrepresentations related to Gibbs energy in general chemistry textbooks. These misrepresentations arise from a problem in the terminology textbooks use. Thus, after reviewing the proper definition of each of the terms analyzed, we present two problems to exemplify the correct treatment of the quantities involved, which may help in the discussion and clarification of the misleading conventions and assumptions reported in this study.
Resumo:
This report describes a simple, inexpensive and highly effective instructional model based on the use of a tablet device to enable the real-time projection of the instructor's digitally handwritten annotations to teach chemistry in undergraduate courses. The projection of digital handwriting allows the instructor to build, present and adapt the class contents in a dynamic fashion and to save anything that is annotated or displayed on the screen for subsequent sharing with students after each session. This method avoids the loss of continuity and information that often occurs when instructors switch between electronic slides and white/chalk board during lessons. Students acknowledged that this methodology allows them to follow the instructor's cognitive process and the progressive development of contents during lectures as the most valuable aspect of the implemented instructional model.
Resumo:
A historiographical study of Jane Marcet’s role in spreading chemistry knowledge to a wider audience in the 19th century is presented here. Her efforts to spread scientific knowledge were crucial to sharing the most important theories of chemistry among different audiences, particularly women and young people. Through her book, “Conversations on Chemistry,” which was published in several editions from 1806 to 1853, she contributed significantly to chemistry education. Despite controversy over the large number of editions, this text is a strong witness to the active participation of women in science. Her scientific rigor and contribution to narrative strategies in chemistry pedagogy have given Jane Marcet consideration not only as an important woman in the scientific community of England during the first half of the 19th century but also as a central figure in the early development of chemistry diffusion and education.
Resumo:
Vätning av fasta ytor är ett viktigt fenomen i såväl naturen som i en lång rad av industriella tillämpningar. Det är allmänt känt att vätningen av en fast yta styrs av ytans kemi samt struktur. Målsättningen med avhandlingen var att studera hur kemisk heterogenitet och ytråhet på nanometernivå påverkar vätningsegenskaperna hos en fast yta. Ytorna som studerades var titandioxid-baserade kerama ytor som framställdes med hjälp av en sol-gel process. Vätningstudierna utfördes genom kontaktvinkelmätningar, vilket innebär att man mäter vinkeln som vätska/luft-gränsskiktet hos en vätskedroppe bildar mot en fast yta. Ytråheten hos materialen studerades främst genom atomkraftsmikroskopi (AFM). I AFM detekteras ytans struktur av en mycket skarp nål som skannar ytan. Resultaten i avhandlingen kunde framgångsrikt modelleras med existerande teorier för vätning av heterogena ytor.
Resumo:
Carbohydrates are one of the most abundant classes of biomolecules on earth. In the initial stages of research on carbohydrates much effort was focused on investigation and determination of the structural aspects and complex nature of individual monosaccharides. Later on, development of protective group strategies and methods for oligosaccharide synthesis became the main topics of research. Today, the methodologies developed early on are being utilized in the production of carbohydrates for biological screening events. This multidisciplinary approach has generated the new discipline of glycobiology which focuses on research related to the appearance and biological significance of carbohydrates. In more detail, studies in glycobiology have revealed the essential roles of carbohydrates in cell-cell interactions, biological recognition events, protein folding, cell growth and tumor cell metastasis. As a result of these studies, carbohydrate derived diagnostic and therapeutic agents are likely to be of growing interest in the future. In this doctoral thesis, a journey through the fundamentals of carbohydrate synthesis is presented. The research conducted on this journey was neither limited to the study of any particular phenomena nor to the addressing of a single synthetic challenge. Instead, the focus was deliberately shifted from time to time in order to broaden the scope of the thesis, to continue the learning process and to explore new areas of carbohydrate research. Throughout the work, several previously reported synthetic protocols, especially procedures related to glycosylation reactions and protective group manipulations, were evaluated, modified and utilized or rejected. The synthetic molecules targeted within this thesis were either required for biological evaluations or utilized to study phenomena occuring in larger molecules. In addition, much effort was invested in the complete structural characterization of the synthesized compounds by a combination of NMR spectroscopic techniques and spectral simulations with the PERCH-software. This thesis provides the basics of working with carbohydrate chemistry. In more detail, synthetic strategies and experimental procedures for many different reactions and guidelines for the NMR-spectroscopic characterization of oligosaccharides and glycoconjugates are provided. Therefore, the thesis should prove valuable to researchers starting their own journeys in the ever expanding field of carbohydrate chemistry.
Resumo:
Den viktigaste råvaran i papperstillverkning är pappersmassa. Massan innehåller (ved)fibrer men också finmaterial och andra typers (ved)celler, så som kärlceller. Hur dessa komponenter beter sig under arkformationen i pappersmaskinen eller hur de bidrar till egenskaperna hos det färdiga pappret avgörs till stor del av massakomponenternas ytkemiska sammansättning, fysiska struktur och mängden joniserbara grupper på ytan. I denna avhandling studerades ytegenskaperna hos fraktionerade kemiska massor och returfibermassor med avancerade analystekniker. Rester av avfärgningskemikalier identifierades på både returfibrer och på kärlceller. Dessa kan påverka arkformationen och arkstyrkan på returfiberpapper. Kärlcellernas cellväggsstruktur visade sig skilja sig från fibrernas. Resultaten kan främja utvecklingen av returfiberprosessen och användningen av kärlcellsrika lövvedsmassor.
Resumo:
The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation, and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the Programme when assessing the effects of the emissions from the Pechenganikel mining and metallurgical industry (Kola GMK). The Metallurgic Production Renovation Programme was implemented by OJSC Kola GMK to reduce emissions of sulphur and heavy metal concentrated dust. However, the expectations for the reduction in emissions from the smelter in the settlement Nikel were not realized. Nevertheless, Kola GMK has found that the modernization programme’s measures do not provide the planned reductions of sulfur dioxide emissions. In this report, temporal trends in water chemistry during 2000–2009 are examined on the basis of the data gathered from Lake Inari, River Pasvik and directly connected lakes, as well as from 26 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse, and the small lakes and streams which are not directly linked to the Pasvik watercourse, only receive atmospheric pollution. The data obtained confirms the ongoing pollution of the river and water system. Copper (Cu), nickel (Ni) and sulphates are the main pollution components. The highest levels were observed close to the smelters. The most polluted water source of the basin is the River Kolosjoki, as it directly receives the sewage discharge from the smelters and the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentrations of metals and sulphates in the River Pasvik are higher downstream from the Kuetsjarvi Lake. There has been no fall in the concentrations of pollutants in Pasvik watercourse over the last 10 years. Ongoing recovery from acidification has been evident in the small lakes of the Jarfjord and Vätsäri areas during the 2000s. The buffering capacity of these lakes has improved and the pH has increased. The reason for this recovery is that sulphate deposition has decreased, which is also evident in the water quality. However, concentrations of some metals, especially Ni and Cu, have risen during the 2000s. Ni concentrations have increased in all three areas, and Cu concentrations in the Pechenganickel and Jarfjord areas, which are located closer to the smelters. Emission levels of Ni and Cu did not fall during 2000s. In fact, the emission levels of Ni compounds even increased compared to the 1990s.
Resumo:
This thesis is based on computational chemistry studies on lignans, focusing on the naturally occurring lignan hydroxymatairesinol (HMR) (Papers I II) and on TADDOL-like conidendrin-based chiral 1,4-diol ligands (LIGNOLs) (Papers III V). A complete quantum chemical conformational analysis on HMR was previously conducted by Dr. Antti Taskinen. In the works reported in this thesis, HMR was further studied by classical molecular dynamics (MD) simulations in aqueous solution including torsional angle analysis, quantum chemical solvation e ect study by the COnductorlike Screening MOdel (COSMO), and hydrogen bond analysis (Paper I), as well as from a catalytic point of view including protonation and deprotonation studies at di erent levels of theory (Paper II). The computational LIGNOL studies in this thesis constitute a multi-level deterministic structural optimization of the following molecules: 1,1-diphenyl (2Ph), two diastereomers of 1,1,4-triphenyl (3PhR, 3PhS), 1,1,4,4-tetraphenyl (4Ph) and 1,1,4,4-tetramethyl (4Met) 1,4-diol (Paper IV) and a conformational solvation study applying MD and COSMO (Paper V). Furthermore, a computational study on hemiketals in connection with problems in the experimental work by Docent Patrik Eklund's group synthesizing the LIGNOLs based on natural products starting from HMR, is shortly described (Paper III).
Resumo:
Magellanic penguins (Spheniscus magellanicus) routinely migrate from their breeding colonies to Southern Brazil often contracting diseases during this migration, notably avian malaria, which has been already reported in Brazil and throughout the world. Detection of Plasmodium spp. in blood smears is the routine diagnostic method of avian malaria, however it has a low sensitivity rate when compared to molecular methods. Considering the negative impact of avian malaria on penguins, the aim of this study was to detect the presence of Plasmodium spp. in Magellanic penguins using Polymerase Chain Reaction (PCR) and by verifying clinical, hematological, and biochemical alterations in blood samples as well as to verify the likely prognosis in response to infection. Blood samples were obtained from 75 penguins to determine packed cell volume (PCV), red blood cell (RBC) and white blood cell (WBC) counts, mean corpuscular volume (MCV), uric acid, total protein, albumin, globulin and aspartate aminotransferase (AST) activity levels. Whole blood samples were used for PCR assays. Plasmodium spp. was detected in 32.0% of the specimens using PCR and in 29.3% using microscopic analyses. Anorexia, diarrhea and neurological disorders were more frequent in penguins with malaria and a significant weight difference between infected and non-infected penguins was detected. PCV and MCV rates showed no significant difference. RBC and WBC counts were lower in animals with avian malaria and leukopenia was present in some penguins. Basophil and lymphocyte counts were lower in infected penguins along with high monocyte counts. There was no significant difference in AST activities between infected and non-infected animals. There was a significant increase in uric acid values, however a decrease in albumin values was observed in infected penguins. Based on this study, we concluded that Plasmodium spp. occurs in Magellanic penguins of rehabilitation centers in Southeastern Brazil, compromising the weight of infected animals with clinical alterations appearing in severe cases of this disease. It was also noted that, although the hematological abnormalities presented by these animals may not have been conclusive, leukopenia, monocytosis and the decrease of basophils and lymphocytes revealed an unfavorable prognosis, and Plasmodium spp. infections may progress with elevated uric acid concentration and low albumin levels.
Resumo:
It is well known that the interaction of polyelectrolytes with oppositely charged surfactants leads to an associative phase separation; however, the phase behavior of DNA and oppositely charged surfactants is more strongly associative than observed in other systems. A precipitate is formed with very low amounts of surfactant and DNA. DNA compaction is a general phenomenon in the presence of multivalent ions and positively charged surfaces; because of the high charge density there are strong attractive ion correlation effects. Techniques like phase diagram determinations, fluorescence microscopy, and ellipsometry were used to study these systems. The interaction between DNA and catanionic mixtures (i.e., mixtures of cationic and anionic surfactants) was also investigated. We observed that DNA compacts and adsorbs onto the surface of positively charged vesicles, and that the addition of an anionic surfactant can release DNA back into solution from a compact globular complex between DNA and the cationic surfactant. Finally, DNA interactions with polycations, chitosans with different chain lengths, were studied by fluorescence microscopy, in vivo transfection assays and cryogenic transmission electron microscopy. The general conclusion is that a chitosan effective in promoting compaction is also efficient in transfection.
Resumo:
Iron is one of the most common elements in the earth’s crust and thus its availability and economic viability far exceed that of metals commonly used in catalysis. Also the toxicity of iron is miniscule, compared to the likes of platinum and nickel, making it very desirable as a catalyst. Despite this, prior to the 21st century, the applicability of iron in catalysis was not thoroughly investigated, as it was considered to be inefficient and unselective in desired transformations. In this doctoral thesis, the application of iron catalysis in combination with organosilicon reagents for transformations of carbonyl compounds has been investigated together with insights into iron catalyzed chlorination of silanes and silanols. In the first part of the thesis, the synthetic application of iron(III)-catalyzed chlorination of silanes (Si-H) and the monochlorination of silanes (SiH2) using acetyl chloride as the chlorine source is described. The reactions proceed under ambient conditions, although some compounds need to be protected from excess moisture. In addition, the mechanism and kinetics of the chlorination reaction are briefly adressed. In the second part of this thesis a versatile methodology for transformation of carbonyl compounds into three different compound classes by changing the conditions and amounts of reagents is discussed. One pot reductive benzylation, reductive halogenation and reductive etherification of ketones and aldehydes using silanes as the reducing agent, halide source or cocatalyst, were investigated. Also the reaction kinetics and mechanism of the reductive halogenation of acetophenone are briefly discussed.