956 resultados para Substrate patterning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gal(1-x)Mn(x)Sb epilayer was prepared on the n-type GaSb substrate by liquid phase epitaxy. The structure of the Gal(1-x)Mn(x)Sb epilayer was analyzed by double-crystal X-ray diffraction. From the difference of the lattice constant between the GaSb substrate and the Ga1-xMnxSb epilayer, the Mn content in the Ga1-xMnxSb epilayer were calculated as x = 0.016. The elemental composition of Ga1-xMnxSb epilayer was analyzed by energy dispersive spectrometer. The carrier concentration was obtained by Hall measurement. The hole concentration in the Ga1-xMnxSb epilayer is 4.06 x 10(19)cm(-3). It indicates that most of the Mn atoms in Ga1-xMnxSb take the site of Ga, and play a role of acceptors. The current-voltage curve of the Ga1-xMnxSb/GaSb heterostructure was measured, and the rectifying effect is obvious. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Ga, Gd, As) film was fabricated by the mass-analyzed dual ion-beam epitaxy system with the energy of 1000 eV at room temperature. There was no new peak found except GaAs substrate peaks (0 0 2) and (0 0 4) by X-ray diffraction. Rocking curves were measured for symmetric (0 0 4) reflections to further yield the lattice mismatch information by employing double-crystal X-ray diffraction. The element distributions vary so much due to the ion dose difference from AES depth profiles. The sample surface morphology indicates oxidizing layer roughness is also relative to the Gd ion dose, which leads to islandlike feature appearing on the high-dose sample. One sample shows ferromagnetic behavior at room temperature. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface of a laser-discrete-quenched steel substrate and as-deposited chromium electroplate was investigated by ion beam etching, dissolving-substrate-away and using a Vickers microhardness tester, in an attempt to reveal the mechanism that the service life of the chromium-coated parts is increased by the duplex technique of laser pre-quenching plus chromium post-depositing. The laser quenching of the steel substrate can reduce the steep hardness gradient at the substrate/chromium interface and improve the load-bearing capacity of chromium electroplate. Moreover, the laser quenching prior to plating has an extremely great effect on the morphologies and microstructure of the substrate/chromium interface: there is a transient interlayer at the original substrate/chromium interface while there is not at the laser-quenchedzone/chromium interface; the near-substrate surface microstructure and morphologies of the free-standing chromium electrodeposits, whose substrate was dissolved away with nital 30% in volume, inherit the periodically gradient characteristics of the laser-discrete-quenched substrate surface. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of substrate laser-discrete quenching on the degradation failure of chromium-plated gun barrels was metallurgically investigated. The results show that substrate laser-discrete quenching changes the failure patterns of chromium coatings during firing, and some periodic through-thickness cracks in the fired chromium coatings are justly located at original substrate zones between two adjacent laser-quenched tracks. Moreover, chromium coatings and the laser-quenched zones on the substrate are simultaneously degraded in microstructure and property during firing. Furthermore, the periodic structure of the laser-discrete-quenched steel (LDQS) substrate near the breech remains after firing, and the hardness of the fired laser-quenched zones is still higher than that of original substrates. The specific failure features were utilized to illustrate the mechanism of the extended service life of chromium-plated gun barrels with the LDQS substrate. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanical model of a coating/laser pre-quenched steel substrate specimen with a crack oriented perpendicular to the interface between the coating and the hardened layer is developed to quantify the effects of the residual stress and hardness gradient on the crack driving force in terms of the J-integral. It is assumed that the crack tip is in the middle of the hardened layer of the pre-quenched steel substrate. Using a composite double cantilever beam model, analytical solutions can be derived, and these can be used to quantify the effects of the residual stress and the hardness gradient resulting from the pre-quenched steel substrate surface on the crack driving force. A numerical example is presented to investigate how the residual compressive stress, the coefficient linking microhardness and yield strength and the Young's modulus ratio of the hardened layer to the coating influence the crack driving force for a given crack length. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peel test measurements have been performed to estimate both the interface toughness and the separation strength between copper thin film and Al2O3 substrate with film thicknesses ranging between 1 and 15 mu m. An inverse analysis based on the artificial neural network method is adopted to determine the interface parameters. The interface parameters are characterized by the cohesive zone (CZ) model. The results of finite element simulations based on the strain gradient plasticity theory are used to train the artificial neural network. Using both the trained neural network and the experimental measurements for one test result, both the interface toughness and the separation strength are determined. Finally, the finite element predictions adopting the determined interface parameters are performed for the other film thickness cases, and are in agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of film-substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol., 191, 25-32), in which Al-Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1-0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film-substrate nano-indentation experiments. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The close form solutions of deflections and curvatures for a film-substrate composite structure with the presence of gradient stress are derived. With the definition of more precise kinematic assumption, the effect of axial loading due to residual gradient stress is incorporated in the governing equation. The curvature of film-substrate with the presence of gradient stress is shown to be nonuniform when the axial loading is nonzero. When the axial loading is zero, the curvature expressions of some structures derived in this paper recover the previous ones which assume the uniform curvature. Because residual gradient stress results in both moment and axial loading inside the film-substrate composite structure, measuring both the deflection and curvature is proposed as a safe way to uniquely determine the residual stress state inside a film-substrate composite structure with the presence of gradient stress.