997 resultados para Structural instability
Resumo:
MS/MS data derived from the [M-H](-) ions of desulfated caerulein peptides provide (i) sequencing information from a combination of alpha, beta and gamma backbone cleavages, and (ii) identification of specific amino acid side chains by side-chain cleavages [e.g. Ser (-CH2O), Thr (-CH3CHO) and Asp (-H2O)] (fragmentations having no counterparts in positive ion spectra). In addition, delta and/or gamma backbone cleavage ions from Asp residues identify the position of these residues in the peptide. In contrast, neither delta nor gamma cleavage ions are observed from either the Gln2 residue nor from Phe residues. Full structural information can be obtained from a consideration of the positive and negative ion MS/MS data in concert. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
The formation of CdS nanoparticles by reacting mixed Langmuir-Blodgett films of arachidic acid and either octadecylamine or dimethyldioctadecylammonium nitrate on a cadmium-containing subphase with hydrogen sulfide gas has resulted in the identification of a number of structural changes, observed using grazing incidence X-ray diffraction. In the case of octadecylamine, the structure after reaction is a hexagonal close-packed array of surfactant-stabilized nanoclusters, with a lattice constant of a = 17.65 Angstrom. In both octadecylamine and dimethyldioctadecylammonium nitrate films, the presence of a unit cell tilted at 38degrees to the plane of the substrate was found. Despite these changes, the average nanoparticle size was unaffected by the addition of either second component to the film.
Resumo:
Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
The composition of an open-forest lizard assemblage in eastern Australia was examined before and after a low-intensity controlled fire and concurrently compared with that in an adjoining unburnt area. The effect of fire on the available structural environment and the habitat used by two focal species, Carlia vivax and Lygisaurus foliorum, was also examined. Lizard species richness was unaffected by the controlled burn as was the abundance of most species. C. vivax was the only species to display a significant reduction in abundance after fire. While the low-intensity fire resulted in significant changes to the available structural environment, there were no compensatory shifts in the habitat preferences of either C. vivax or L. foliorum. The reduction in abundance of C. vivax was congruent with this species' avoidance of burnt areas. C. vivax displayed a non-random preference for ground cover and litter cover, which were reduced in burnt areas. Changes in the availability of preferred structural habitat features are likely to contribute to changes in the abundance of some lizard species. Therefore, even low-intensity disturbances can have an impact on lizard assemblages if critical habitat features are lost or become limiting.
Resumo:
The retinoid orphan-related receptor-alpha (RORalpha) is a member of the ROR subfamily of orphan receptors and acts as a constitutive activator of transcription in the absence of exogenous ligands. To understand the basis of this activity, we constructed a homology model of Rill using the closely related TRbeta as a template. Molecular modeling suggested that bulky hydrophobic side chains occupy the RORa ligand cavity leaving a small but distinct cavity that may be involved in receptor stabilization. This model was subject to docking simulation with a receptor-interacting peptide from the steroid receptor coactivator, GR-interacting protein-1, which delineated a coactivator binding surface consisting of the signature motif spanning helices 3-5 and helix 12 [activation function 2 (AF2)]. Probing this surface with scanning alanine mutagenesis showed structural and functional equivalence between homologous residues of RORalpha and TRbeta. This was surprising (given that Rill is a ligand-independent activator, whereas TRbeta has an absolute requirement for ligand) and prompted us to use molecular modeling to identify differences between Rill and TRbeta in the way that the All helix interacts with the rest of the receptor. Modeling highlighted a nonconserved amino acid in helix 11 of RORa (Phe491) and a short-length of 3.10 helix at the N terminus of AF2 which we suggest i) ensures that AF2 is locked permanently in the holoconformation described for other liganded receptors and thus 2) enables ligand-independent recruitment of coactivators. Consistent with this, mutation of RORa Phe491 to either methionine or alanine (methionine is the homologous residue in TRbeta), reduced and ablated transcriptional activation and recruitment of coactivators, respectively. Furthermore, we were able to reconstitute transcriptional activity for both a deletion mutant of Ill lacking All and Phe491 Met, by overexpression of a GAL-AF2 fusion protein, demonstrating ligand-independent recruitment of AF2 and a role for Phe491 in recruiting AF2.
Resumo:
The characteristics of sharkskin surface instability for linear low density polyethylene are studied as a function of film blowing processing conditions. By means of scanning electron microscopy and surface profilometry, is it found that for the standard industrial die geometry studied, sharkskin only occurs on the inside of the film bubble. Previous work suggests that this instability may be due to critical extensional stress levels at the exit of the die. Isothermal integral viscoelastic simulations of the annular extrusion process are reported, and confirm that the extensional stress at the die exit is large enough to cause local melt rupture. However the extensional stress level at the outer die wall predicts melt rupture of the outside bubble surface also, which contradicts the experimental findings. A significant temperature gradient is expected to exist across the die gap at the exit of the die, due to the external heating of the die and the low conductivity, of the polymer melt. It is shown that a gradient of 20 degreesC is required to cause sharkskin to only appear on the inner bubble surface.
Resumo:
The effect of heat treatment on the structure of an Australian semi-anthracite char was studied in detail in the 850-1150degreesC temperature range using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change significantly during heat treatment in the temperature range studied, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained almost unchanged. This suggests the occurrence of catalytic ordering during heat treatment, supported by the observation that the electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary significantly. Further confirmatory evidence was provided by high resolution transmission electron micrographs depicting well-organized carbon layers surrounding iron particles. It is also found that the fraction of organized carbon does not reach unity, but attains an apparent equilibrium value that increases with increase in temperature, providing an apparent heat of ordering of 71.7 kJ mol(-1) in the temperature range studied. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is indeed structure sensitive. Good correlation was also found between the electrical resistivity and the reactivity of coal char. All these results strongly suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. Based on kinetic interpretation of the data it is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be very low, at about 11.8 kJ mol(-1), which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
alpha-Conotoxin AuIB and a disulfide bond variant of AuIB have been synthesized to determine the role of disulfide bond connectivity on structure and activity. Both of these peptides contain the 15 amino acid sequence GCCSYPPCFATNPDC, with the globular (native) isomer having the disulfide connectivity Cys(2-8 and 3-15) and the ribbon isomer having the disulfide connectivity Cys(2-15 and 3-8). The solution structures of the peptides were determined by NAIR spectroscopy, and their ability to block the nicotinic acetylcholine receptors on dissociated neurons of the rat parasympathetic ganglia was examined. The ribbon disulfide isomer, although having a less well defined structure, is surprisingly found to have approximately 10 times greater potency than the native peptide. To our knowledge this is the first demonstration of a non-native disulfide bond isomer of a conotoxin exhibiting greater biological activity than the native isomer.
Resumo:
Antimicrobial peptides occur in a diverse range of organisms from microorganisms to insects, plants and animals. Although they all have the common function of inhibiting or killing invading microorganisms they achieve this function using an extremely diverse range of structural motifs. Their sizes range from approximately 10-90 amino acids. Most carry an overall positive charge, reflecting a preferred mode of electrostatic interaction with negatively charged microbial membranes. This article describes the structural diversity of a representative set of antimicrobial peptides divided into five structural classes: those with agr-helical structure, those with bgr-sheet structure, those with mixed helical / bgr- sheet structure, those with irregular structure, and those incorporating a macrocyclic structure. There is a significant diversity in both the size and charge of molecules within each of these classes and between the classes. The common feature of their three-dimensional structures is, however, that they have a degree of amphipathic character in which there is separate localisation of hydrophobic regions and positively charged regions. An emerging trend amongst antimicrobial proteins is the discovery of more macrocyclic analogues. Cyclisation appears to impart an additional degree of stability on these molecules and minimizes proteolytic cleavage. In conclusion, there appear to be a number of promising opportunities for the development of novel clinically useful antimicrobial peptides based on knowledge of the structures of naturally occurring antimicrobial molecules.
Resumo:
Transthyretin (TTR) is a 55 kDa protein responsible for the transport of thyroid hormones and retinol in human serum. Misfolded forms of the protein are implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases. To assist in such studies we developed a method for the solid phase synthesis of the monomeric unit of a TTR analogue and its folding to form a functional 55 kDa tetramer. The monomeric unit of the protein was chemically synthesized in three parts, comprising amino acid residues 151, 5499 and 102127, and ligated using chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of the TTRs native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, TTR antibody recognition and thyroid hormone binding. In the current study the solution structure of the first of these fragment peptides, TTR(151) is examined to determine its intrinsic propensity to form beta-sheet structure, potentially involved in amyloid fibril formation by TTR. Despite the presence of extensive beta-structure in the native form of the protein, the Nterminal fragment adopts an essentially random coil conformation in solution.
Resumo:
We compare Bayesian methodology utilizing free-ware BUGS (Bayesian Inference Using Gibbs Sampling) with the traditional structural equation modelling approach based on another free-ware package, Mx. Dichotomous and ordinal (three category) twin data were simulated according to different additive genetic and common environment models for phenotypic variation. Practical issues are discussed in using Gibbs sampling as implemented by BUGS to fit subject-specific Bayesian generalized linear models, where the components of variation may be estimated directly. The simulation study (based on 2000 twin pairs) indicated that there is a consistent advantage in using the Bayesian method to detect a correct model under certain specifications of additive genetics and common environmental effects. For binary data, both methods had difficulty in detecting the correct model when the additive genetic effect was low (between 10 and 20%) or of moderate range (between 20 and 40%). Furthermore, neither method could adequately detect a correct model that included a modest common environmental effect (20%) even when the additive genetic effect was large (50%). Power was significantly improved with ordinal data for most scenarios, except for the case of low heritability under a true ACE model. We illustrate and compare both methods using data from 1239 twin pairs over the age of 50 years, who were registered with the Australian National Health and Medical Research Council Twin Registry (ATR) and presented symptoms associated with osteoarthritis occurring in joints of the hand.
Resumo:
Expression of membrane-bound Fas ligand (FasL) by colorectal cancer cells may allow the development of an immune-privileged site by eliminating incoming tumour-infiltrating lymphocytes (TILs) in a Fas-mediated counter-attack. Sporadic colorectal cancer can be subdivided into three groups based on the level of DNA microsatellite instability (NISI). High-level NISI (NISI-High) is characterized by the presence of TILs and a favourable prognosis, while microsatellite-stable (MSS) cancers are TIL-deficient and low-level MSI (MSI-Low) is associated with an intermediate TIL density. The purpose of this study was to establish the relationship between MSI status and FasL expression in primary colorectal adenocarcinoma. Using immunohistochemistry and a selected series of 101 cancers previously classified as 31 MSI-High, 30 NISI-Low, and 40 MISS, the present study sought to confirm the hypothesis that increased TIL density in MSI-High cancers is associated with low or absent membrane-bound FasL expression, while increased FasL in MSS cancers allows the killing of host TILs. TUNEL/CD3 double staining was also used to determine whether MSS cancers contain higher numbers of apoptotic TILs in vivo than MSI-High or MSI-Low cancers. Contrary to the initial hypothesis, it was found that MSI-High cancers were associated with higher FasL expression (p = 0.04) and a stronger intensity of FasL staining (p = 0.007). In addition, mucinous carcinomas were independently characterized by increased FasL expression (p = 0.03) and staining intensity (p = 0.0005). Higher FasL expression and staining intensity did not correlate with reduced TIL density or increased numbers of apoptotic TILs. However, consistent with the hypothesis that curtailment of the host anti-tumour immune response contributes to the poor prognosis in MSS cancers, it was found that apoptotic TILs were most abundant in MSS carcinomas and metastatic Dukes' stage C or D tumours (p = 0.004; p = 0.046 respectively). This study therefore suggests that MSS colorectal cancers are killing incoming TILs in an effective tumour counter-attack, but apparently not via membrane-bound FasL. Copyright (C) 2003 John Wiley Sons, Ltd.