954 resultados para String-pulling
Resumo:
Relatório de estágio de mestrado em Ensino de Música
Resumo:
The Common whelk, Buccinum undatum (L.) is a conspicuous benthic scavenger in Irish waters, and is a valuable fisheries resource in South East Ireland. B. undatum is fished in many parts of its range, and previous studies have shown that certain life history parameters, which vary with location, make this species vulnerable to overexploitation. This makes research into each exploited stock essential to ensure sustainable fisheries management of the species. In 2003, interest in B. undatum as a complementary species in the inshore fishery east of the Inishowen Peninsula, North West Ireland, initiated investigation into fisheries related biological and population aspects of the species in this region. The current study presents estimates of spatial variation and density of the stock, size at age and growth rates, size and age at onset of sexual maturity, and timing of reproductive events in the region of the North West Irish whelk fishery for the period of June 2003 to May 2004. Analysis of variance of the total shell length of whelk landings to the fishery was conducted over spatial scales of fishing pot, fishing string and landings to vessels. Landings varied significantly in shell length at the spatial scale at which whelks are attracted to baited pots, but did not vary significantly over larger spatial scales. Depletion estimates of stock density from fisheries derived Catch per Unit Effort data and a mark re-capture experiment estimate 0.134 - 0.227 whelks per m2. Two independent methods of age determination found similar growth logistics functions for B. undatum.Modal analysis of length frequency distribution of landings to the fishery estimated symptotic length, Leo = 151.64 mm and Brody growth coefficient, K = 0.04. Analysis of the striae in individual opercula, where each stria was found to represent annual growth, estimated Loo = 137.73 mm and K = 0.12. Common whelks in the region of the North West Irish whelk fishery grow slowly and are long-lived, with 19 opercula striae recorded in one individual. Onset of sexual maturity is late, and no sex-specific differences in size or age at maturity were determined in the present study. Males were found to achieve sexual maturity at 83.30 ± 10.77 mm, and 8.9 - 11.1 years of age, and females at 82.62 ± 10.68 mm and 8.8 to 11.1 years of age. Systematic observations of reproductive events, including histological changes to the female ovary and male testis, and changes in the size and mass of body components, suggest that breeding occurred between the autumn and winter months of October and December 2003. Biological aspects of B. undatum in the study region are compared with previous studies from other regions, and discussed in relation to sustainable management of the fishery.
Resumo:
The present work deals with the study of the effects of selfing and crossing in pures lines of okra inbred for five generations and the methods of breeding in this plant. This work is party of a large program of this Dept. to study heterosis in plants naturally self pollinated. The technic of selfing consists of tying with a string the floral bud before anthesis. To make controlled crosses, it is necessary to emasculate the flowers removing the anthers with small forceps, and to cover the flowers with a bag and wait for 1 or 2 days until the blooming. Also, the male parents are covered with paper bags prior to flowering. Finally, the pollen is brushed lightly over the stigma of the emasculated flowers and the females unit rebagged. The authors have tried without sucess the technic of soda fountain straw used for cotton. The treatments were: I) Fl of the cross pure-line x foreign variety (not improved by breeding). II) Fl of the cross pure-line x parental variety and III) pure-line 5 generations inbred. In order to compare the production of these three treatments, a randomized blocks with 4 replications was designed; since we had 6 families in each treatment, the total number was: 4 replications x 3 treatments x 6 families: = 72. Each familiy was planted in lines of 10 plants. Owing to the design devised, the present experiment corresponds to a split-plot. The analysis of variance of the number and the weight of the pods is given in tables 2 and 4, and shows the following: 1) The production expressed in both numbers and weights of the cross, - pure lines x foreign variety - was statistically smaller than the others treatments, i, e., the cross of pure-lines x parental variety and the pure-lines; 2) The production of the treatments pure-lines x parental variety and selfed purelines was the same. It was proved that the selfing do not produce harmful effects in okra, it was benefical, since after 5 inbred generations the production was the same when compared with Fl of the parental variety. Also, the methods of pure-lines are indicated to improve varieties of okra.
Resumo:
The human Rad52 protein stimulates joint molecule formation by hRad51, a homologue of Escherichia coli RecA protein. Electron microscopic analysis of hRad52 shows that it self-associates to form ring structures with a diameter of approximately 10 nm. Each ring contains a hole at its centre. hRad52 binds to single and double-stranded DNA. In the ssDNA-hRad52 complexes, hRad52 was distributed along the length of the DNA, which exhibited a characteristic "beads on a string" appearance. At higher concentrations of hRad52, "super-rings" (approximately 30 nm) were observed and the ssDNA was collapsed upon itself. In contrast, in dsDNA-hRad52 complexes, some regions of the DNA remained protein-free while others, containing hRad52, interacted to form large protein-DNA networks. Saturating concentrations of hRad51 displaced hRad52 from ssDNA, whereas dsDNA-Rad52 complexes (networks) were more resistant to hRad51 invasion and nucleoprotein filament formation. When Rad52-Rad51-DNA complexes were probed with gold-conjugated hRad52 antibodies, the presence of globular hRad52 structures within the Rad51 nucleoprotein filament was observed. These data provide the first direct visualisation of protein-DNA complexes formed by the human Rad51 and Rad52 recombination/repair proteins.
Resumo:
El objetivo fundamental de este proyecto consiste en crear un generador de compilador, basado en analizadores ascendentes. Como base para hacer este analizador se usará el lenguaje Cosel y el módulo Com, que es un generador de compiladores basado en analizadores descendentes y que actualmente se está utilizando en las prácticas de la asignatura de Compiladores I. El nuevo generador, que tiene como entrada una gramática, ha de comprobar si es una gramática ascendente LALR (1) y analizar una cadena de entrada de símbolos usando dicha gramática.
Resumo:
Este trabajo desarrolla el proceso de diseño e implementación de una interfaz web que permite la exploración en detalle de las relaciones entre genomas completos. La interfaz permite la comparación simultánea de nueve genomas, representando en cada gráfica las relaciones entre cada par de genomas junto los genes identificados de cada uno de ellos. Es capaz de trabajar con genomas del dominio Eukaryota y se adapta a la capacidad de cómputo de la máquina cliente. La información representada son MUMs (Maximal Unique Matching, secuencia máxima y única encontrada en ambos genomas) y SuperMUMs (agrupación de MUMs mediante Approximate String Matching). Los datos son previamente calculados y accesibles desde un servidor web.
Resumo:
Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel, potentially less invasive alternative to laparoscopic surgery. However, the problems of transluminal access and closure represent significant obstacles to its successful introduction in humans. Objective: to evaluate the feasibility and safety of a novel device designed for transluminal access and closure in a survival porcine model. Subjects: Four adult female Yorkshire pigs were used in the study. Interventions: While under general anesthesia, the animals were prepared with multiple tap water enemas followed by instillation of an antibiotic suspension and povidone-iodine lavage. At a distance of 15 to 20 cm from the anus, the prototype device (LSI Solutions, Victor, NY, USA) deployed a circumscribing purse-string suture around the planned incision site and subsequently used a blade mechanism to create a 2.5-cm linear incision. The transcolonic incision was then closed by cinching and securing the purse-string suture with a titanium knot by use of a separate hand-activated suture-locking device. Main Outcome Measurements: The animals were monitored daily for signs of peritonitis and sepsis and were survived for 14 days. The peritoneal cavity was examined for peritonitis, and the colonic incision site was examined for wound dehiscence, pericolic abscess formation, and gross adhesions. Tissue samples from both incisional and random peritoneal sites were obtained for histologic examination. Results: Transcolonic incision and closure were successful in all 4 animals. The device performed in a rapid and reproducible fashion. All animals recovered without septic complications. At necropsy, there was no evidence of peritonitis, abscesses, or wound dehiscence. Salpingocolonic and colovesicular adhesions were noted in 3 of 4 animals. Histologic examination revealed microabscesses at the incision site in all animals. Conclusions: The prototype incision and closure device represents a promising solution to the problems of transluminal access for NOTES. The presence of incision-related adhesions and microabscesses signal the need for further refinement in aseptic technique.
Resumo:
Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7-Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.
Resumo:
The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) was created in 1998 as an institution to foster excellence in bioinformatics. It is renowned worldwide for its databases and software tools, such as UniProtKB/Swiss-Prot, PROSITE, SWISS-MODEL, STRING, etc, that are all accessible on ExPASy.org, SIB's Bioinformatics Resource Portal. This article provides an overview of the scientific and training resources SIB has consistently been offering to the life science community for more than 15 years.
Resumo:
It is a common macroscopic observation that knotted ropes or fishing lines under tension easily break at the knot. However, a more precise localization of the breakage point in knotted macroscopic strings is a difficult task. In the present work, the tightening of knots was numerically simulated, a comparison of strength of different knots was experimentally performed and a high velocity camera was used to precisely localize the site where knotted macroscopic strings break. In the case of knotted spaghetti, the breakage occurs at the position with high curvature at the entry to the knot. This localization results from joint contributions of loading, bending and friction forces into the complex process of knot breakage. The present simulations and experiments are in agreement with recent molecular dynamics simulations of a knotted polymer chain and with experiments performed on actin and DNA filaments. The strength of the knotted string is greatly reduced (down to 50%) by the presence of a knot, therefore reducing the resistance to tension of all materials containing chains of any sort. The present work with macroscopic strings revels some important aspects, which are not accessible by experiments with microscopic chains.
Resumo:
Objective: The aim of this study was to investigate the feasibility of transventricular-transseptal approach (TVSA) for extrapleural transcatheter aortic valved stent implantation via a subxyphoidian access. Methods: In five porcine experiments (52.3 +/- 10.9 kg) the right ventricle was exposed via subxyphoidian access. Under the guidance of intracardiac echocardiography (ICE) and fluoroscopy, the transseptal access from right ventricle to left ventricle was created progressively by puncture and dilation with dilators (8F-26F). Valved stents built in-house from commercial tanned pericardium and self-expandable Nitinol stents were loaded into a cartridge. A delivery sheath was then introduced from the right ventricle into the left ventricle and then into the ascending aorta. The cartridge was connected and the valved stent was deployed in the aortic position. Then, the ventricular septal access was sealed with an Amplatzer septal occluder device and the right ventricular access was closed by tying prepared purse-string suture directly. Thirty minutes after the whole procedure, the animals were sacrificed for macroscopic evaluation of the position of valved stent and septal closure device. Result: Procedural success of TVSA was 100% at the first attempt. Mean procedure time was 49 +/- 4 min. Progressive dilatation of the transseptal access resulted in a measurable ventricular septal defect (VSD) after dilator sizes 18F and more. All valved stents were delivered at the target site over the native aortic valve with good acute valve function and no paravalvular leaks. During the procedure, premature beats (5/5) and supraventriclar tachycardias (5/5) were observed, but no atrial-ventricular block (0/5) occurred. Heart rate before (after) was 90 +/- 3 beats min(-1) (100 +/- 2 beats min(-1): p < 0.05), whereas blood pressure was 60 + 1 mm Hg (55 + 2 mm Hg (p < 0.05)). Total blood loss was 280 + 10 ml. The Amplatzer septal occluder devices were fully deployed and the ventricular septal accesses were sealed successfully, without detectable residual shunt. Conclusion: Trans-catheter implantation of aortic valved stent via extrapleural transventricular-transseptal access is technically feasible and has the potential for a simplified procedure under local anaesthesia. (C) 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B. V. All rights reserved.
Resumo:
In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.
Resumo:
The shortest tube of constant diameter that can form a given knot represents the 'ideal' form of the knot. Ideal knots provide an irreducible representation of the knot, and they have some intriguing mathematical and physical features, including a direct correspondence with the time-averaged shapes of knotted DNA molecules in solution. Here we describe the properties of ideal forms of composite knots-knots obtained by the sequential tying of two or more independent knots (called factor knots) on the same string. We find that the writhe (related to the handedness of crossing points) of composite knots is the sum of that of the ideal forms of the factor knots. By comparing ideal composite knots with simulated configurations of knotted, thermally fluctuating DNA, we conclude that the additivity of writhe applies also to randomly distorted configurations of composite knots and their corresponding factor knots. We show that composite knots with several factor knots may possess distinct structural isomers that can be interconverted only by loosening the knot.
Resumo:
Probably the most natural energy functional to be considered for knotted strings is that given by electrostatic repulsion. In the absence of counter-charges, a charged, knotted string evolving along the energy gradient of electrostatic repulsion would progressively tighten its knotted domain into a point on a perfectly circular string. However, in the presence of charge screening self-repelling knotted strings can be stabilized. It is known that energy functionals in which repulsive forces between repelling charges grow inversely proportionally to the third or higher power of their relative distance stabilize self-repelling knots. Especially interesting is the case of the third power since the repulsive energy becomes scale invariant and does not change upon Mobius transformations (reflections in spheres) of knotted trajectories. We observe here that knots minimizing their repulsive Mobius energy show quantization of the energy and writhe (measure of chirality) within several tested families of knots.
Resumo:
Helicobacter pylori infection is one of the most common infections worldwide and is associated with gastric diseases. Virulence factors such as VacA and CagA have been shown to increase the risk of these diseases. Studies have suggested a causal role of CagA EPIYA-C in gastric carcinogenesis and this factor has been shown to be geographically diverse. We investigated the number of CagA EPIYA motifs and the vacA i genotypes in H. pylori strains from asymptomatic children. We included samples from 40 infected children (18 females and 22 males), extracted DNA directly from the gastric mucus/juice (obtained using the string procedure) and analysed the DNA using polymerase chain reaction and DNA sequencing. The vacA i1 genotype was present in 30 (75%) samples, the i2 allele was present in nine (22.5%) samples and both alleles were present in one (2.5%) sample. The cagA-positive samples showed distinct patterns in the 3’ variable region of cagA and 18 of the 30 (60%) strains contained 1 EPIYA-C motif, whereas 12 (40%) strains contained two EPIYA-C motifs. We confirmed that the studied population was colonised early by the most virulent H. pylori strains, as demonstrated by the high frequency of the vacA i1 allele and the high number of EPIYA-C motifs. Therefore, asymptomatic children from an urban community in Fortaleza in northeastern Brazil are frequently colonised with the most virulent H. pylori strains.