987 resultados para Stress Wave Force Balances
Resumo:
Background: The Lateral Septal Area (LSA) is involved with autonomic and behavior responses associated to stress. In rats, acute restraint (RS) is an unavoidable stress situation that causes autonomic (body temperature, mean arterial pressure (MAP) and heart rate (HR) increases) and behavioral (increased anxiety-like behavior) changes in rats. The LSA is one of several brain regions that have been involved in stress responses. The aim of the present study was to investigate if the neurotransmission blockade in the LSA would interfere in the autonomic and behavioral changes induced by RS. Methodology/Principal Findings: Male Wistar rats with bilateral cannulae aimed at the LSA, an intra-abdominal datalogger (for recording internal body temperature), and an implanted catheter into the femoral artery (for recording and cardiovascular parameters) were used. They received bilateral microinjections of the non-selective synapse blocker cobalt chloride (CoCl(2), 1 mM/ 100 nL) or vehicle 10 min before RS session. The tail temperature was measured by an infrared thermal imager during the session. Twenty-four h after the RS session the rats were tested in the elevated plus maze (EPM). Conclusions/Significance: Inhibition of LSA neurotransmission reduced the MAP and HR increases observed during RS. However, no changes were observed in the decrease in skin temperature and increase in internal body temperature observed during this period. Also, LSA inhibition did not change the anxiogenic effect induced by RS observed 24 h later in the EPM. The present results suggest that LSA neurotransmission is involved in the cardiovascular but not the temperature and behavioral changes induced by restraint stress.
Resumo:
Phototherapy is noninvasive, painless and has no known side effect. However, for its incorporation into clinical practice, more well-designed studies are necessary to define optimal parameters for its application. The viability of fibroblasts cultured under nutritional stress irradiated with either a red laser, an infrared laser, or a red light-emitting diode (LED) was analyzed. Irradiation parameters were: red laser (660 nm, 40 mW, 1 W/cm(2)), infrared laser (780 nm, 40 mW, 1 W/cm(2)), and red LED (637 +/- 15 nm, 40 mW, 1 W/cm(2)). All applications were punctual and performed with a spot with 0.4 mm(2) of diameter for 4 or 8 s. The Kruskal-Wallis test and analysis of variance of the general linear model (p <= 0.05) were used for statistical analysis. After 72 h, phototherapy with low-intensity laser and LED showed no toxicity at the cellular level. It even stimulated methylthiazol tetrazolium assay (MTT) conversion and neutral red uptake of fibroblasts cultured under nutritional stress, especially in the group irradiated with infrared laser (p = 0.004 for MTT conversion and p < 0.001 for neutral red uptake). Considering the parameters and protocol of phototherapy used, it can be concluded that phototherapy stimulated the viability of fibroblasts cultured under nutritional deficit resembling those found in traumatized tissue in which cell viability is reduced. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3602850]
Resumo:
Objective: To determine if the magnitude of the force used to induce incisor tooth movement promotes distinct activation in cells in the central amygdala (CEA) and lateral hypothalamus (LH) of rats. Also, the effect of morphine on Fos immunoreactivity (Fos-IR) was investigated in these nuclei. Materials and Methods: Adult male rats were anesthetized and divided into six groups: only anesthetized (control), without orthodontic appliance (OA), OA but without force, OA activated with 30g or 70g, OA with 70g in animals pretreated with morphine (2 mg/kg, intraperitoneal). Three hours after the onset of the experiment the rats were reanesthetized and perfused with 4% paraformaldehyde. The brains were removed and fixed, and sections containing CEA and LH were processed for Fos protein immunohistochemistry. Results: The results show that in the control group, the intramuscular injection of a ketamine/xylazine mixture did not induce Fos-IR cells in the CEA or in the LH. Again, the without force group showed a little Fos-IR. However, in the 70g group the Fos-IR was the biggest observed (P < .05, Tukey) in the CEA and LH compared with the other groups. In the 30g group, the Fos-IR did not differ from the control group, the without OA group, and the without force group. Furthermore, pretreatment with morphine in the 70g group reduced Fos-IR in these regions. Conclusions: Tooth movement promotes Fos-IR in the CEA and LH according to the magnitude of the force applied. (Angle Orthod. 2010;80:111-115.)
Resumo:
In the last decades there was an increase in stress at work and its effects on workers' health. These issues are still little studied in the electric utility sector. This study aims to evaluate factors associated with stress at work and to verify its associations with health status among workers of an electric company in Sao Paulo State, Brazil. A cross-sectional study was conducted with 474 subjects (87.5% of the eligible workers). Data were collected using self-reported questionnaires. A descriptive analysis, a multiple linear hierarchical regression analysis and a correlation analysis were performed. The majority of participants were males (91.1%) and the mean age was 37.5 yr. The mean score of stress level was 2.3 points (scale ranging from 1.0 to 5.0). Hierarchical multiple analyses showed that: regular practice of physical activities (p=0.025) and individual monthly income (p=0.002) were inversely associated with stress level; BMI was marginally associated with the stress level (p=0.074). The demographic characteristics were not associated with stress. Stress at work was significantly associated with physical and mental health status (p<0.001). To improve health of electric utility workers, actions are suggested to decrease stress by remuneration and an appropriate practice of physical activity aiming reduction of BMI.
Resumo:
Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG), 25 mM D-glucose (high glucose, HG) or 25 mM L-glucose medium (osmotic control - OC), we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC). We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.
Resumo:
Objective: To investigate if development of skeletal muscle fatigue during repeated voluntary biceps contractions could be attenuated by low-level laser therapy (LLLT). Background Data: Previous animal studies have indicated that LLLT can reduce oxidative stress and delay the onset of skeletal muscle fatigue. Materials and Methods: Twelve male professional volleyball players were entered into a randomized double-blind placebo-controlled trial, for two sessions (on day 1 and day 8) at a 1-wk interval, with both groups performing as many voluntary biceps contractions as possible, with a load of 75% of the maximal voluntary contraction force (MVC). At the second session on day 8, the groups were either given LLLT (655 nm) of 5 J at an energy density of 500 J/cm(2) administered at each of four points along the middle of the biceps muscle belly, or placebo LLLT in the same manner immediately before the exercise session. The number of muscle contractions with 75% of MVC was counted by a blinded observer and blood lactate concentration was measured. Results: Compared to the first session (on day 1), the mean number of repetitions increased significantly by 8.5 repetitions (+/- 1.9) in the active LLLT group at the second session (on day 8), while in the placebo LLLT group the increase was only 2.7 repetitions (+/- 2.9) (p = 0.0001). At the second session, blood lactate levels increased from a pre-exercise mean of 2.4 mmol/L (+/- 0.5 mmol/L), to 3.6 mmol/L (+/- 0.5 mmol/L) in the placebo group, and to 3.8 mmol/L (+/- 0.4 mmol/L) in the active LLLT group after exercise, but this difference between groups was not statistically significant. Conclusion: We conclude that LLLT appears to delay the onset of muscle fatigue and exhaustion by a local mechanism in spite of increased blood lactate levels.
Resumo:
Objective: The aim of this study was to assess by atomic force microscopy (AFM) the effect of Er,Cr:YSGG laser application on the surface microtopography of radicular dentin. Background: Lasers have been used for various purposes in dentistry, where they are clinically effective when used in an appropriate manner. The Er, Cr: YSGG laser can be used for caries prevention when settings are below the ablation threshold. Materials and Methods: Four specimens of bovine dentin were irradiated using an Er, Cr:YSGG laser (lambda = 2.78 mu m), at a repetition rate of 20 Hz, with a 750-mu m-diameter sapphire tip and energy density of 2.8 J/cm(2) (12.5 mJ/pulse). After irradiation, surface topography was analyzed by AFM using a Si probe in tapping mode. Quantitative and qualitative information concerning the arithmetic average roughness (Ra) and power spectral density analyses were obtained from central, intermediate, and peripheral areas of laser pulses and compared with data from nonirradiated samples. Results: Dentin Ra for different areas were as follows: central, 261.26 (+/- 21.65) nm; intermediate, 83.48 (+/- 6.34) nm; peripheral, 45.8 (+/- 13.47) nm; and nonirradiated, 35.18 (+/- 2.9) nm. The central region of laser pulses presented higher ablation of intertubular dentin, with about 340-760 nm height, while intermediate, peripheral, and nonirradiated regions presented no difference in height of peritubular and interperitubular dentin. Conclusion: According to these results, we can assume that even when used at a low-energy density parameter, Er, Cr: YSGG laser can significantly alter the microtopography of radicular dentin, which is an important characteristic to be considered when laser is used for clinical applications.
Resumo:
The authors describe a novel approach to the measurement of nanofriction, and demonstrate the application of the method by measurement of the coefficient of friction for diamondlike carbon (DLC) on DLC, Si on DLC, and Si on Si surfaces. The technique employs an atomic force microscope in a mode in which the tip moves only in the z (vertical) direction and the sample surface is sloped. As the tip moves vertically on the sloped surface, lateral tip slipping occurs, allowing the cantilever vertical deflection and the frictional (lateral) force to be monitored as a function of tip vertical deflection. The advantage of the approach is that cantilever calibration to obtain its spring constants is not necessary. Using this method, the authors have measured friction coefficients, for load range 0 < L M 6 mu N, of 0.047 +/- 0.002 for Si on Si, 0.0173 +/- 0.0009 for Si on DLC, and 0.0080 +/- 0.0005 for DLC on DLC. For load range 9 < L < 13 mu N, the DLC on DLC coefficient of friction increased to 0.051 +/- 0.003. (C) 2008 American Vacuum Society.
Resumo:
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Resumo:
At the 2008 Summer Olympics in Beijing, Usain Bolt broke the world record for the 100 m sprint. Just one year later, at the 2009 World Championships in Athletics in Berlin he broke it again. A few months after Beijing, Eriksen [Am. J. Phys. 77, 224-228 (2009)] studied Bolt's performance and predicted that Bolt could have run about one-tenth of a second faster, which was confirmed in Berlin. In this paper we extend the analysis of Eriksen to model Bolt's velocity time dependence for the Beijing 2008 and Berlin 2009 records. We deduce the maximum force, the maximum power, and the total mechanical energy produced by Bolt in both races. Surprisingly, we conclude that all of these values were smaller in 2009 than in 2008.
Resumo:
We have performed a systematic study of the magnetic properties of a series of ferrimagnetic nanoparticles of Mg(x)Fe(3-x)O(4) (0.8 <= x <= 1.5) prepared by the combustion reaction method. The magnetization data can be well fitted by Bloch's law with T(3/2). Bloch's constant B determined from the fitting procedure was found to increase with Mg content x from similar to 3.09 X 10(-5) K(-3/2) for x = 0.8 to 6.27 X 10(-5) K(-3/2) for x=1.5. The exchange integral J(AB) and the spin-wave stiffness constant D of Mg(x)Fe(3-x)O(4) nanoparticles were also determined as similar to 0.842 and 0.574 meV and 296 and 202 meV angstrom(2) for specimens with x=0.8 and 1.5, respectively. These results are discussed in terms of cation redistribution among A and B sites on these nanostructured spinel ferrites. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3359709]
Resumo:
High wave-vector spin waves in ultrathin Fe/W(110) films up to 20 monolayers (MLs) thick have been studied using spin-polarized electron energy-loss spectroscopy. An unusual nonmonotonous dependence of the spin wave energies on the film thickness is observed, featuring a pronounced maximum at 2 ML coverage. First-principles theoretical study reveals the origin of this behavior to be in the localization of the spin waves at the surface of the film, as well as in the properties of the interlayer exchange coupling influenced by the hybridization of the electron states of the film and substrate and by the strain.
Resumo:
We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor, and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.
Resumo:
We propose a model for D(+)->pi(+)pi(-)pi(+) decays following experimental results which indicate that the two-pion interaction in the S wave is dominated by the scalar resonances f(0)(600)/sigma and f(0)(980). The weak decay amplitude for D(+)-> R pi(+), where R is a resonance that subsequently decays into pi(+)pi(-), is constructed in a factorization approach. In the S wave, we implement the strong decay R ->pi(+)pi(-) by means of a scalar form factor. This provides a unitary description of the pion-pion interaction in the entire kinematically allowed mass range m(pi pi)(2) from threshold to about 3 GeV(2). In order to reproduce the experimental Dalitz plot for D(+)->pi(+)pi(-)pi(+), we include contributions beyond the S wave. For the P wave, dominated by the rho(770)(0), we use a Breit-Wigner description. Higher waves are accounted for by using the usual isobar prescription for the f(2)(1270) and rho(1450)(0). The major achievement is a good reproduction of the experimental m(pi pi)(2) distribution, and of the partial as well as the total D(+)->pi(+)pi(-)pi(+) branching ratios. Our values are generally smaller than the experimental ones. We discuss this shortcoming and, as a by-product, we predict a value for the poorly known D ->sigma transition form factor at q(2)=m pi(2).
Resumo:
We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.