904 resultados para Strains and stresses.
Resumo:
BACKGROUND: The aim of this study was to characterise the mycoflora and the presence of fumonisin in sorghum grains, correlating the results with the environment and abiotic factors. RESULTS: Fifty samples (five collections of ten samples each) of sorghum were analysed. All samples were found to be contaminated with fungi, with higher frequencies of Cladosporium spp. (61.8%) and Helminthosporium spp. (33.4%). Fusarium verticillioides was isolated from 15.1% of the samples, with 38% of them being contaminated with fumonisin B(1) (FB(1)) at levels ranging from 50 to 368.78 ng g(-1). Regarding abiotic factors, temperature, water activity and rainfall showed a positive correlation with the frequency of F. verticillioides and FB(1) production. There was a significant positive correlation between relative air humidity and FB(1) production. The results obtained from sexual crosses between standard F mating tester strains and the isolated strains confirmed that the strains isolated were F. verticillioides. CONCLUSION: It can be concluded that the decrease in F. verticillioides and fumonisin contamination occurred owing to atypical climatic factors during the period of sorghum cultivation, when there was any occurrence of rain and the level of water activity of grains did not reach 0.58. (C) 2010 Society of Chemical Industry
Resumo:
Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.
Resumo:
Parvimonas micra are gram positive anaerobic cocci isolated from the oral cavity and frequently related to polymicrobial infections in humans. Despite reports about phenotypic differences, the genotypic variation of P. micra and its role in virulence are still not elucidated. The aim of this study was to determine the genotypic diversity of P. micra isolates obtained from the subgingival biofilm of subjects with different periodontal conditions and to correlate these findings with phenotypic traits. Three reference strains and 35 isolates of P. micro were genotyped by 16S rRNA PCR-RFLP and phenotypic traits such as collagenase production, elastolytic and hemolytic activities were evaluated. 16S rRNA PCR-RFLP showed that P. micra could be grouped into two main clusters: C1 and C2; cluster C1 harbored three genotypes (HG1259-like, HG1467-like and ICBM0583-like) while cluster C2 harbored two genotypes (ATC03270-like and ICBM036). A wide variability in collagenolytic activity intensities was observed among all isolates, while elastolytic activity was detected in only two isolates. There was an association between hemolytic activity in rabbit erythrocytes and cluster C2. There was an association between hemolytic activity in rabbit erythrocytes and cluster C1. Although these data suggest a possible association between P. micra genetic diversity and their pathogenic potential, further investigations are needed to confirm this hypothesis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The 195-bp satellite DNA is the most abundant Trypanosoma cruzi repetitive sequence. Here we show by RNA blotting and RT-PCR that 195 SAT is intensely transcribed. We observed a positive correlation between the level of satellite RNA and the abundance of the satellite copies in the genome of T cruzi strains and that the satellite expression is not developmentally regulated. By analyzing CL Brener individual reads, we estimated that 195 SAT corresponds to approximately 5% of the CL Brener genome. 195 SAT elements were found in only 37 annotated contigs, indicating that a large number of satellite copies were not incorporated into the assembled data. The assembled satellite units are distributed in non-syntenic regions with Trypanosoma brucei and Leishmania major genomes, enriched with surface proteins, retroelements, RHS and hypothetical proteins. Satellite repeats were not observed in annotated subtelomeric regions. We report that 12 satellite sequences are truncated by the retroelement VIPER. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Little is known about the microbial diversity associated with marine macroorganisms, despite the vital role microorganisms may play in marine ecosystems. The aim of the present study was to investigate the diversity of bacteria and fungi isolated from eight marine invertebrate and one algae samples. Data derived from ARDRA and sequencing analyses allowed the identification of marine-derived microorganisms isolated from those samples. Microbial strains identified up to the genus level revealed 144 distinct ribotypes out of 256 fungal strains and 158 distinct ribotypes out of 181 bacterial strains. Filamentous fungi were distributed among 24 different genera belonging to Ascomycota, Zygomycota and Basidiomycota, some of which had never been reported in the literature as marine invertebrate-inhabiting fungi (Pestalotiopsis, Xylaria, Botrysphaeria and Cunnninghamella). Bacterial isolates were affiliated to 41 different genera, being Bacillus, Ruegeria, Micrococcus, Pseudovibrio and Staphylococcus the most abundant ones. Results revealed an unexpected high microbial diversity associated to the macroorganisms which have been collected and suggested the selection of certain microbial taxonomic groups according to the host. The combined data gathered from this investigation contribute to broaden the knowledge of microbial diversity associated to marine macroorganisms, including as a promising source for the discovery of new natural products. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Tuberculosis (TB) is one of the most common infectious diseases known to man and responsible for millions of human deaths in the world. The increasing incidence of TB in developing countries, the proliferation of multidrug resistant strains, and the absence of resources for treatment have highlighted the need of developing new drugs against TB. The shikimate pathway leads to the biosynthesis of chorismate, a precursor of aromatic amino acids. This pathway is absent from mammals and shown to be essential for the survival of Mycobacterium tuberculosis, the causative agent of TB. Accordingly, enzymes of aromatic amino acid biosynthesis pathway represent promising targets for structure-based drug design. The first reaction in phenylalanine biosynthesis involves the conversion of chorismate to prephenate, catalyzed by chorismate mutase. The second reaction is catalyzed by prephenate dehydratase (PDT) and involves decarboxylation and dehydratation of prephenate to form phenylpyruvate, the precursor of phenylalanine. Here, we describe utilization of different techniques to infer the structure of M. tuberculosis PDT (MtbPDT) in solution. Small angle X-ray scattering and ultracentrifugation analysis showed that the protein oligomeric state is a tetramer and MtbPDT is a flat disk protein. Bioinformatics tools were used to infer the structure of MtbPDT A molecular model for MtbPDT is presented and molecular dynamics simulations indicate that MtbPDT i.s stable. Experimental and molecular modeling results were in agreement and provide evidence for a tetrameric state of MtbPDT in solution.
Resumo:
The aim of this paper was to evaluate the biological aspects of Plutella xylostella and Trichogramma pretiosum in eggs of the F2 generation of P. xylostella under the influence of Bacillus thuringiensis in laboratory conditions. The experiment was conducted in the Laboratorio de Biologia and Criacao de Insetos of Faculdade de Ciencias Agrarias e Veterinarias de Jaboticabal - UNESP reen collars contaminated with strains and commercial product based on B. thuringiensis in the laboratory. The eggs obtained from the F2 generation of P. xylostella evaluated the biological parameters of T. pretiosum. It was observed that some biological characteristics of P. xylostella showed changes by the treatment with B. thuringiensis. The viability of the larvae and pupae stages, pupae weight were the biological parameters more influenced by treatments, with values significantly reduced when compared to control. However, the larvae length and pupae stages and sex ratio were similar in all treatments, with no significant biological variations. Thus, this bacterium isolated from this behavior may provide greater exposure of larvae to other natural enemies as well as generation of adults less viable, which makes them potential programs in pest control, since the interaction of the methods of control is one of the main ways to enhance the biological control of insect pests. It was observed sublethal effects on P. xylostella biology, and B. thuringiensis negative influence on the parasitism capacity and emergency of T. pretiosum.
Resumo:
A semi-nested reverse transcription-polymerase chain reaction (Semi-N-RT-PCR) was developed and used to detect the S glycoprotein gene of infectious bronchitis virus (IBV) strains and to discriminate H120 vaccine strain from other strains. Viral RNA was extracted from the allantoic fluid of chicken embryos and from tissues of chickens experimentally infected with different strains of IBV. Amplification and identification of the viral RNA was performed using two sets of primers complementary to a region of the S glycoprotein gene in the Semi-N-RT-PCR assay. The pair of primers used in the first PCR consisted of universal oligonucleotides flanking a more variable region of S1-S2 gene. The second primer pair was used in the Semi-N-RT-PCR and was comprised of one of the primers from the first universal pair together with either another universal internal oligolucleotide or a oligonucleotide sequence specific for the H120 strain of IBV. The universal primers detected all reference IBV strains and field isolates tested herein. The Semi-N-RT-PCR had high sensitivity and specificity, and was able to differentiate the H120 vaccine strain from other reference IBV strains; including M41 strain. All tissue samples collected from chickens experimentally infected with H120 or M41 strains were positive in the semi-nested RT-PCR using universal primers, while only the H120-infected tissue samples were amplified by the set of primers containing the H120-oligonucleotide. In conclusion, the ability of Semi-N-RT-PCR to detect distinct IBV strains and preliminarily discriminate the vaccine strain (H120) closes a diagnostic gap and offers the opportunity to use comprehensive PCR procedures for the IBV diagnosis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work deals with the initial applications and formulation of an aniscitropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.
Resumo:
Genomic DNAs isolated from strains of Xylella fastidiosa that caused citrus variegated chlorosis, coffee leaf scorch, Pierce's Disease of grapevine, and plum leaf scorch were analyzed by arbitrarily primed polymerase chain reaction. Purified DNA was amplified under nonstringent conditions with single primers 21 nucleotides (nt) long. Thirty-nine amplification products were observed that were useful to distinguish among the strains and to derive a similarity matrix and construct a phenogram showing possible relationships among the strains. Strains isolated from diseased coffee and citrus in Brazil were closely related to each other (coefficient of similarity of 0.872), but only distantly related to a strain isolated from diseased grapevine in the USA (coefficient of similarity of 0.650). Strains of Xylella fastidiosa isolated from diseased plums in the USA and Brazil clustered with strains from different hosts isolated from their respective countries of origin. Thus, there may be two quite dissimilar clusters of strains of Xylella fastidiosa, one in North America and the other in South America. Each cluster contains strains that can cause disease in plum. The methods described provide a convenient and rapid method to distinguish between strains of Xylella fastidiosa that cause diseases of coffee and citrus in the same region of Brazil. This has not been possible previously. This will potentially enable the two strains to be distinguished in alternate hosts or in insect vectors.
Resumo:
The mechanisms by which arthritis-provoking pathogens such as Yersinia enterocolitica interact with the human immune system to produce inflammatory synovitis are not well known. One of the immunomodulating mechanisms used against these pathogens is the polyclonal activation of lymphocytes. In this study, we investigated the extent of the B-lymphocyte activation induced in mice by a strain of Y. enterocolitica O:3 (FCF 526) isolated from a patient with arthritis, and compared it with two other strains, a virulent one (FCF 397[+]) isolated from a patient without arthritis and its plasmidless isogenic pair (FCF397[-]). Also we investigated the production of autoantibodies in mice infected with these different strains. SPF Swiss mice were infected intravenously with a suspension of Y. enterocolitica . Spleen cells were taken on days 7, 14, 21 and 28 after infection and the number of cells secreting nonspecific and specific antibodies of IgG 1 , IgG 2a , IgG 2b , IgG 3 , IgM and IgA isotypes were determined by the ELISPOT technique. The presence of autoantibodies in mouse serum was investigated by the dot-blot assay. The pattern of infection of the three bacterial strains were almost the same. We observed a general increase in the number of nonspecific Ig-secreting cells with all three strains, and the greatest increases observed were in the IgG 2a and IgG 3 isotypes. Only a small fraction of the immunoglobulins detected were antibacterial, suggesting that the rest resulted from polyclonal B cell activation. The strain isolated from the patient with arthritis (FCF526) induced the greatest production of autoantibodies, coinciding with the period in which the greatest activation of nonspecific B lymphocytes was seen. There were no signs of arthritis or inflammation in the joints of the infected animals. Based on our results, we were unable to determine whether there is an association between the arthritogenic capability of Y. enterocolitica and polyclonal activation of B cells.
Resumo:
The incidence of Vibrio cholerae, Aeromonas spp, and Plesiomonas shigelloides was determined in Rater samples from Cambe Stream. The samples were collected from seven different sites. The serogroups, virulence markers and drug resistance profiles were also evaluated. Twelve. Aer. hydrophila, 12 Aer. caviae, eight Aer. sobria, seven Ple. shigelloides and two V. cholerae non-O1 were isolated. They belonged to different serogroups and all produced haemolysis in different assays. Five of the Aeromonas strains and one of V, cholerae non-O1 were positive for enterotoxin activity. Haemagglutination and its inhibition, using erythrocytes of different origins, was variable for Aeromonas spp and V. cholerae, while none of the Plt. shigelloides haemagglutinated in association with any type of erythrocyte. All isolates exhibited multiple drug resistance. These results indicate that the occurrence of V. cholerae non-O1, Aeromonas spp, and Ple. shigelloides, in water used for vegetable irrigation, human recreation and animal consumption, among others, represents a potential risk for humans.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by beta-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 A degrees C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0-5.5. They were stable in the pH range 5.0-10.0 and 5.5-8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55C and 60 A degrees C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 A degrees C.