929 resultados para Statistics|Health Sciences, Public Health|Health Sciences, Oncology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Cardiac risk assessment in cancer patients has not extensively been studied. We evaluated the role of stress myocardial perfusion imaging (MPI) in predicting cardiovascular outcomes in cancer patients undergoing non-cardiac surgery. ^ Methods. A retrospective chart review was performed on 507 patients who had a MPI from 01/2002 - 03/2003 and underwent non-cardiac surgery. Median follow-up duration was 1.5 years. Cox proportional hazard model was used to determine the time-to-first event. End points included total cardiac events (cardiac death, myocardial infarction (MI) and coronary revascularization), cardiac death, and all cause mortality. ^ Results. Of all 507 MPI studies 146 (29%) were abnormal. There were significant differences in risk factors between normal and abnormal MPI groups. Mean age was 66±11 years, with 60% males and a median follow-up duration of 1.8 years (25th quartile=0.8 years, 75th quartile=2.2 years). The majority of patients had an adenosine stress study (53%), with fewer exercise (28%) and dobutamine stress (16%) studies. In the total group there were 39 total cardiac events, 31 cardiac deaths, and 223 all cause mortality events during the study. Univariate predictors of total cardiac events included CAD (p=0.005), previous MI (p=0.005), use of beta blockers (p=0.002), and not receiving chemotherapy (p=0.012). Similarly, the univariate predictors of cardiac death included previous MI (p=0.019) and use of beta blockers (p=0.003). In the multivariate model for total cardiac events, age at surgery (HR 1.04, p=0.030), use of beta blockers (HR 2.46; p=0.011), dobutamine MPI (HR 3.08; p=0.018) and low EF (HR 0.97; p=0.02) were significant predictors of worse outcomes. In the multivariate model for predictors of cardiac death, beta blocker use (HR=2.74; p=0.017) and low EF (HR=0.95; p<0.003) were predictors of cardiac death. The only univariate MPI predictor of total cardiac events was scar severity (p=0.005). While MPI predictors of cardiac death were scar severity (p= 0.001) and ischemia severity (p=0.02). ^ Conclusions. Stress MPI is a useful tool in predicting long term outcomes in cancer patients undergoing surgery. Ejection fraction and severity of myocardial scar are important factors determining long term outcomes in this group.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of literature was carried out regarding sexually related factors, sexually transmissible diseases (STD's) and infections with prostate cancer (PC) development risk. The review of literature, in conjunction with the tabulation of studies, suggested that ejaculation and circumcision may play a protective role in the development of PC and that multiple sex partners and an active sex life may play a causal role in the development of PC which may negate and counteract the protective effects of ejaculation and circumcision. HIV infection may plausibly play a function in deteriorating and compromising immune controls on carcinogenesis. Because of the coexistence of a highly active sexual lifestyle and sexual promiscuity with the growing occurence of STD's, their maybe a correlation with the high incidence of prostate cancer in the United States. Potential multi-institutional studies are warranted to confirm the high incidence of this neoplasm with the increasing cases of STD's and if in fact there is a proportional association to further elucidate the factors responsible for its high incidence.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aberrant expression and/or activation of Src Family of non-receptor protein tyrosine kinases (SFKs) occur frequently during progressive stages of multiple types of human malignancies, including prostate cancer. Two SFKs, Src and Lyn, are expressed and implicated in prostate cancer progression. Work in this dissertation investigated the specific roles of Src and Lyn in the prostate tumor progression, and the effects of SFK inhibition on prostate tumor growth and lymph node metastasis in pre-clinical mouse models. ^ Firstly, using a pharmacological inhibitor of SFKs in clinical trials, dasatinib, I demonstrated that SFK inhibition affects both cellular migration and proliferation in vitro. Systemic administration of dasatinib reduced primary tumor growth, as well as development of lymph node metastases, in both androgen-sensitive and -resistant orthotopic prostate cancer mouse models. Immunohistochemical analysis of the primary tumors revealed that dasatinib treatment decreased SFK phosphorylation but not expression, resulting in decreased cellular proliferation and increased apoptosis. For this analysis of immunohistochemical stained tissues, I developed a novel method of quantifying immunohistochemical stain intensity that greatly reduced the inherent bias in analyzing staining intensity. ^ To determine if Src and Lyn played overlapping or distinct roles in prostate cancer tumor growth and progression, Src expression alone was inhibited by small-interfering RNA. The resulting stable cell lines were decreased in migration, but not substantially affected in proliferation rates. In contrast, an analogous strategy targeting Lyn led to stable cell lines in which proliferation rates were significantly reduced. ^ Lastly, I tested the efficacy of a novel SFK inhibitor (KX2-391) targeting peptide substrate-binding domain, on prostate cancer growth and lymph node metastasis in vivo. I demonstrated that KX2-391 has similar effects as dasatinib, an ATP-competitive small molecular inhibitor, on both the primary tumor growth and development of lymph node metastasis in vivo, work that contributed to the first-in-man Phase I clinical trial of KX2-391. ^ In summary, studies in this dissertation provide the first demonstration that Src and Lyn activities affect different cellular functions required for prostate tumor growth and metastasis, and SFK inhibitors effectively reduce primary tumor growth and lymph node metastasis. Therefore, I conclude that SFKs are promising therapeutic targets for treatment of human prostate cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Investigations into the shortcomings of current intracavitary brachytherapy (ICBT) technology has lead us to design an Anatomically Adaptive Applicator (A3). The goal of this work was to design and characterize the imaging and dosimetric capabilities of this device. The A3 design incorporates a single shield that can both rotate and translate within the colpostat. We hypothesized that this feature, coupled with specific A3 component construction materials and imaging techniques, would facilitate artifact-free CT and MR image acquisition. In addition, by shaping the delivered dose distribution via the A3 movable shield, dose delivered to the rectum will be less compared to equivalent treatments utilizing current state-of-the-art ICBT applicators. ^ Method and materials. A method was developed to facilitate an artifact-free CT imaging protocol that used a "step-and-shoot" technique: pausing the scanner midway through the scan and moving the A 3 shield out of the path of the beam. The A3 CT imaging capabilities were demonstrated acquiring images of a phantom that positioned the A3 and FW applicators in a clinically-applicable geometry. Artifact-free MRI imaging was achieved by utilizing MRI-compatible ovoid components and pulse-sequences that minimize susceptibility artifacts. Artifacts were qualitatively compared, in a clinical setup. For the dosimetric study, Monte-Carlo (MC) models of the A3 and FW (shielded and unshielded) applicators were validated. These models were incorporated into a MC model of one cervical cancer patient ICBT insertion, using 192Ir (mHDR v2 source). The A3 shield's rotation and translation was adjusted for each dwell position to minimize dose to the rectum. Superposition of dose to rectum for all A3 dwell sources (4 per ovoid) was applied to obtain a comparison of equivalent FW treatments. Rectal dose-volume histograms (absolute and HDR/PDR biologically effective dose (BED)) and BED to 2 cc (BED2cc ) were determined for all applicators and compared. ^ Results. Using a "step-and-shoot" CT scanning method and MR compliant materials and optimized pulse-sequences, images of the A 3 were nearly artifact-free for both modalities. The A3 reduced BED2cc by 18.5% and 7.2% for a PDR treatment and 22.4% and 8.7% for a HDR treatment compared to treatments delivered using an uFW and sFW applicator, respectively. ^ Conclusions. The novel design of the A3 facilitated nearly artifact-free image quality for both CT and MR clinical imaging protocols. The design also facilitated a reduction in BED to the rectum compared to equivalent ICBT treatments delivered using current, state-of-the-art applicators. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naturally occurring genetic variants confer susceptibility to disease in the human population, including in testicular germ cell tumor development. Disease susceptibility loci for testicular germ cell tumors have been identified by genetic mapping in humans and mice. However, the identity of many of the susceptibility genes remains unclear. My study utilized a chromosome substitution strain, the 129.MOLF-Chr 19 (or M19 strain), to identify candidate testicular germ cell tumor susceptibility genes. Males of this strain have a high incidence of germ cell tumors in the testes. By forward genetic approaches, five susceptibility loci were fine-mapped and the genetic interactions were dissected. In addition, I identified three protein-coding genes and one micro-RNA as testicular tumor susceptibility genes by genomic screening. Using reverse genetic approaches, I verified one of the candidates, Splicing factor 1, as a modifier of testicular tumor. Deficiency of SF1 significantly reduces the incidence of testicular tumors in mice. This study highlights the advantage of the 129.MOLF-Chr 19 consomic strain in disease gene identification and validation. It also sets the stage to elucidate the molecular mechanisms of tumorigenesis in the testis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternate splicing of the cyclin D1 gene gives rise to transcript a and b which encode two protein isoforms cyclin D1a and cyclin D1b. Through testing transcript a and transcript b in a series of human samples, we found that cyclin D1 transcript b is ubiquitously expressed as transcript a but in the lower abundance compared to transcript a. Epidemiological studies have reported that the cyclin D1 gene (CCND1) G870A polymorphism influences the risk for a variety of cancer. In this investigation, we examined the cyclin D1b levels in tumor samples with different genotypes and found that higher levels of cyclin D1b are expressed from the A allele than the G allele. Cyclin D1 is known as a cell cycle regulator facilitating the progression of the cell cycle from G1 to S phase in response to the mitogenic signals. It also interacts with several transcription factors and transcriptional coregulators to modulate their activities. It has been reported that cyclin D1a can substitute for estrogen to activate estrogen receptor α (ERα) mediated transcription and can induce the proliferation of estrogen responsive tissues. However the biological role of cyclin D1b in ERα transcriptional regulation has not been previously explored. In this study, we determined that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription. Cell proliferation assays provided the evidence that cyclin D1b negatively regulates estrogen responsive breast cancer cell growth. Taken together, our findings show that the CCND1 G870A polymorphism is correlated with increased levels of cyclin D1b and that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription providing evidence for the mechanism by which the CCND1 G870A polymorphism may be protective in certain types of breast cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard treatment strategies for cancer patients include surgery, radiation therapy, and chemotherapy. Although these strategies have been proven effective, they also have associated limitations. An attractive and innovative approach that can be used alone or in combination with the above modalities is based on the systemic or topical administration of a nanomaterial-based photoactive compound. Interaction with light in the near infrared (NIR) region results in either emission of fluorescence, which can be used for photodetection, or absorption of light which results in phototherapy. Nanomaterials have the advantage of providing multi-functional and unique properties in a single device that cannot be readily acquired with conventional small molecular weight compounds. ^ In this study, three different novel nanocarrier systems were designed and evaluated in mediating photodetection and phototherapy in the NIR. The first compound synthesized was a dual-labeled magnetic resonance/optical imaging agent for sentinel lymph node mapping and biopsy. This dual-labeled agent combines the high resolution of magnetic resonance imaging with the highly sensitive detection of optical imaging. The second imaging agent was an activatable optical imaging agent used to monitor cathepsin B activity in vivo and to probe the degradation of poly(L-glutamic acid). This polymeric nanocarrier offers highly sensitive technique for the detection of enzymatic activity, with is not yet possible with small molecular weight compounds. The third agent was a C225-conjugated hollow nanoshell that is targeted to epidermal growth factor receptors. This targeting agent has been demonstrated to mediate photothermal therapy both in vitro and in vivo. ^ These nanocarrier systems are an invaluable tool for the detection of cancer and many other diseases. With improved targeted delivery of these agents, the ability to diagnose diseases will become more sensitive and more specific. Finally, when designed properly, these agents would allow concurrent diagnosis and treatment of patients of various diseases. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The FUS1 tumor suppressor gene (TSG) has been found to be deficient in many human non-small cell lung cancer (NSCLC) tissue samples and cell lines (1,2,3). Studies have shown potent anti-tumor activity of FUS1 in animal models where FUS1 was delivered through a liposomal vector (4) and the use of FUS1 as a therapeutic agent is currently being studied in clinical human trials (5). Currently, the mechanisms of FUS1 activity are being investigated and my studies have shown that c-Abl tyrosine kinase is inhibited by the FUS1 TSG.^ Considering that many NSCLC cell lines are FUS1 deficient, my studies further identified that FUS1 deficient NSCLC cells have an activated c-Abl tyrosine kinase. C-Abl is a known proto-oncogene and while c-Abl kinase is tightly regulated in normal cells, constitutively active Abl kinase is known to contribute to the oncogenic phenotype in some types of hematopoietic cancers. My studies show that the active c-Abl kinase contributes to the oncogenicity of NSCLC cells, particularly in tumors that are deficient in FUS1, and that c-Abl may prove to be a viable target in NSCLC therapy.^ Current studies have shown that growth factor receptors play a role in NSCLC. Over-expression of the epidermal growth factor receptor (EGFR) plays a significant role in aggressiveness of NSCLC. Current late stage treatments include EFGR tyrosine kinase inhibitors or EGFR antibodies. Platelet-derived growth factor receptor (PDGFR) also has been shown to play a role in NSCLC. Of note, both growth factor receptors are known upstream activators of c-Abl kinase. My studies indicate that growth factor receptor simulation along deficiency in FUS1 expression contributes to the activation of c-Abl kinase in NSCLC cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of the thrombin receptor (Protease-Activated-Receptor-1), PAR-1, in cell lines and tissue specimens correlates with the metastatic potential of human melanoma. Utilizing lentiviral shRNA to stably silence PAR-1 in metastatic melanoma cell lines results in decreased tumor growth and lung metastasis in vivo. Since the use of viral technology is not ideal for clinical therapies, neutral liposomes (DOPC) were utilized as a delivery vehicle for PAR-1 siRNA. Our data suggest that PAR-1 siRNA-DOPC treatment by systemic delivery significantly decreases tumor growth and lung metastasis in nude mice. Concomitant decreases in angiogenic and invasive factors (IL-8, VEGF, MMP-2) were observed in PAR-1 siRNA-DOPC-treated mice. Utilizing a cDNA microarray platform, several novel PAR-1 downstream target genes were identified, including Connexin 43 (Cx-43) and Maspin. Cx-43, known to be involved in tumor cell diapedesis and attachment to endothelial cells, is decreased after PAR-1 silencing. Furthermore, the Cx-43 promoter activity was significantly inhibited in PAR-1-silenced cells suggesting transcriptional regulation of Cx-43 by PAR-1. ChIP analysis revealed a reduction in SP-1 and AP-1 binding to the Cx-43 promoter. Moreover, melanoma cell attachment to HUVEC was significantly decreased in PAR-1-silenced cells as well as in Cx-43 shRNA transduced cells. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Maspin, a serine protease inhibitor with tumor-suppressor function, was found to be upregulated after PAR-1 silencing. Our results indicate that PAR-1 transcriptionally regulates Maspin, as the promoter activity was significantly increased after PAR-1 silencing. ChIP analysis revealed that silencing PAR-1 increased binding of Ets and c-Jun to the Maspin promoter. As Maspin was recently found to be a tumor-suppressor in melanoma by reducing the invasive capacity of melanoma cells, invasion assays revealed a decrease in invasion after PAR-1 silencing and in cells transduced with a Maspin expression vector. We propose that PAR-1 is key to the progression and metastasis of melanoma in part by regulating the expression of Cx-43 and Maspin. Taken together, we propose that PAR-1 is an attractive target for the treatment of melanoma.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ordinal outcomes are frequently employed in diagnosis and clinical trials. Clinical trials of Alzheimer's disease (AD) treatments are a case in point using the status of mild, moderate or severe disease as outcome measures. As in many other outcome oriented studies, the disease status may be misclassified. This study estimates the extent of misclassification in an ordinal outcome such as disease status. Also, this study estimates the extent of misclassification of a predictor variable such as genotype status. An ordinal logistic regression model is commonly used to model the relationship between disease status, the effect of treatment, and other predictive factors. A simulation study was done. First, data based on a set of hypothetical parameters and hypothetical rates of misclassification was created. Next, the maximum likelihood method was employed to generate likelihood equations accounting for misclassification. The Nelder-Mead Simplex method was used to solve for the misclassification and model parameters. Finally, this method was applied to an AD dataset to detect the amount of misclassification present. The estimates of the ordinal regression model parameters were close to the hypothetical parameters. β1 was hypothesized at 0.50 and the mean estimate was 0.488, β2 was hypothesized at 0.04 and the mean of the estimates was 0.04. Although the estimates for the rates of misclassification of X1 were not as close as β1 and β2, they validate this method. X 1 0-1 misclassification was hypothesized as 2.98% and the mean of the simulated estimates was 1.54% and, in the best case, the misclassification of k from high to medium was hypothesized at 4.87% and had a sample mean of 3.62%. In the AD dataset, the estimate for the odds ratio of X 1 of having both copies of the APOE 4 allele changed from an estimate of 1.377 to an estimate 1.418, demonstrating that the estimates of the odds ratio changed when the analysis includes adjustment for misclassification. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human cytomegalovirus (HCMV) infection occurs early in life and leads to life-long viral persistence. An association between HCMV infection and malignant gliomas has been reported suggesting that HCMV may play a role in glioma pathogenesis. The reported effects of HCMV on cells suggest that it could facilitate accrual of genotoxic damage. We therefore tested the hypothesis that HCMV infection modifies the sensitivity of cells to genetic damage from environmental insults such as γ-irradiation. Peripheral blood lymphocytes from 110 glioma patients and 100 controls were used to measure the level of both chromosome damage and cell death as endpoints for genetic instability. For each study participant, the extent of baseline, HCMV-, γ-radiation- and both – induced genetic instability was evaluated. Radiation induced a significant increase in aberration frequency over baseline in both cases and controls. Similarly, HCMV induced a significant increase in aberration frequency regardless of the disease status. Interestingly, HCMV induced damage was either equal or higher than that induced by radiation. Infected with HCMV prior to challenge with γ-radiation demonstrated a significant increase in the aberration frequency as compared to baseline, radiation- or HCMV-treated cells. With regards to apoptosis, cases showed a lower percentage of induction following in vitro exposure to γ-radiation and/or HCMV infection. The level of apoptosis was inversely related to the amount of chromosome damage in the cases, but not in the controls. These data indicate that, HCMV infection enhances the sensitivity of PBLs to γ-radiation-induced genetic damage.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on the relationship between psychosocial determinants and HIV risk behaviors have produced little evidence to support hypotheses based on theoretical relationships. One limitation inherent in many articles in the literature is the method of measurement of the determinants and the analytic approach selected. ^ To reduce the misclassification associated with unit scaling of measures specific to internalized homonegativity, I evaluated the psychometric properties of the Reactions to Homosexuality scale in a confirmatory factor analytic framework. In addition, I assessed the measurement invariance of the scale across racial/ethnic classifications in a sample of men who have sex with men. The resulting measure contained eight items loading on three first-order factors. Invariance assessment identified metric and partial strong invariance between racial/ethnic groups in the sample. ^ Application of the updated measure to a structural model allowed for the exploration of direct and indirect effects of internalized homonegativity on unprotected anal intercourse. Pathways identified in the model show that drug and alcohol use at last sexual encounter, the number of sexual partners in the previous three months and sexual compulsivity all contribute directly to risk behavior. Internalized homonegativity reduced the likelihood of exposure to drugs, alcohol or higher numbers of partners. For men who developed compulsive sexual behavior as a coping strategy for internalized homonegativity, there was an increase in the prevalence odds of risk behavior. ^ In the final stage of the analysis, I conducted a latent profile analysis of the items in the updated Reactions to Homosexuality scale. This analysis identified five distinct profiles, which suggested that the construct was not homogeneous in samples of men who have sex with men. Lack of prior consideration of these distinct manifestations of internalized homonegativity may have contributed to the analytic difficulty in identifying a relationship between the trait and high-risk sexual practices. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall purpose of this study was to assess the relationship between the promoter region polymorphism (-2607 1G/2G) of matrix metalloproteinase-1 (MMP-1) polymorphism and outcome in brain tumor patients diagnosed with a primary brain tumor between 1994 and 2000 at The University of Texas M. D. Anderson Cancer Center. The MMP-1 polymorphism was genotyped for all brain tumor patients who participated in the Family Brain Tumor Study and for whom blood samples were available. Relevant covariates were abstracted from medical records for all cases from the original protocol, including information on demographics, tumor histology, therapy and outcome was obtained. The hypothesis was that brain tumor patients with the 2G allele have a poorer prognosis and shorter survival than brain tumor patients with the 1G allele. ^ Experimental Design: Genetic variants for the MMP-1 enzyme were determined by a polymerase chain reaction-restriction fragment length polymorphism assay. Comparison was made between the overall survival for cases with the 2G polymorphism and overall survival for cases with the 1G polymorphism using multivariable Cox Proportional-Hazard analysis, controlling for age, sex, Karnofsky Performance Scale (KPS), extent of surgery, tumor histology and treatment received. Kaplan-Meier and Cox Proportional-Hazard analyses were utilized to assess if the MMP-1 polymorphisms were related to overall survival. Results: Overall survival was not statistically significantly different between the 2G allele brain tumor patients and the 1G allele patients and there was no statistically significant difference between tumor types. ^ Conclusions: No association was found between MMP-1 polymorphisms and survival in patients with malignant gliomas. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human lipocalin 2 is described as the neutrophil gelatinase-associated lipocalin (NGAL). The lipocalin 2 gene encodes a small, secreted glycoprotein that possesses a variety of functions, of which the best characterized function is organic iron binding activity. Elevated NGAL expression has been observed in many human cancers including breast, colorectal, pancreatic and ovarian cancers. I focused on the characterization of NGAL function in chronic myelogenous leukemia (CML) and breast cancer. Using the leukemic xenograft mouse model, we demonstrated that over-expression of NGAL in K562 cells, a leukemic cell line, led to a higher apoptotic rate and an atrophy phenotype in the spleen of inoculated mice compared to K562 cells alone. These results indicate that NGAL plays a primary role in suppressing hematopoiesis by inducing apoptosis within normal hematopoietic cells. In the breast cancer project, we analyzed two microarray data sets of breast cancer cell lines ( n = 54) and primary breast cancer samples (n = 318), and demonstrated that high NGAL expression is significantly correlated with several tumor characteristics, including negative estrogen receptor (ER) status, positive HER2 status, high tumor grade, and lymph node metastasis. Ectopic NGAL expression in non-aggressive (ZR75.1 and MCF7) cells led to aggressive tumor phenotypes in vitro and in vivo. Conversely, knockdown of NGAL expression in various breast cancer cell lines by shRNA lentiviral infection significantly decreased migration, invasion, and metastasis activities of tumor cells both in vitro and in vivo . It has been previously reported that transgenic mice with a mutation in the region of trans-membrane domain (V664E) of HER2 develop mammary tumors that progress to lung metastasis. However, we observed that genetic deletion of the 24p3 gene, a mouse homolog of NGAL, in HER2 transgenic mice by breeding with 24p3-null mice resulted in a significant delay of mammary tumor formation and reduction of lung metastasis. Strikingly, we also found that treatment with affinity purified 24p3 antibodies in the 4T1 breast cancer mice strongly reduced lung metastasis. Our studies provide evidence that NGAL plays a critical role in breast cancer development and progression, and thus NGAL has potential as a new therapeutic target in breast cancer.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleoside analogs are a class of chemotherapeutic agents with tremendous utility in treating viral infections and cancers. Traditional nucleoside analogs are DNA-directed. However, there is a new group of nucleoside analogs that induce cell death by a direct effect on RNA synthesis. The adenosine analog, 8-chloroadenosine, is incorporated into RNA and is currently in clinical trials. Another congener, 8-amino-adenosine has demonstrated toxicity in multiple myeloma cell lines. Like other nucleoside analogs, 8-amino-adenosine must be metabolized to its triphosphate to elicit a cytotoxic effect. Furthermore, 8-amino-adenosine causes a decline of the intracellular ATP pool and inhibits mRNA poly(A) adenylation. ^ Because of the previously known adenosine analog mechanism as well as the scope of the RNA directed nucleoside analog field, I hypothesized there are multiple mechanisms of transcription inhibition mediating 8-amino-adenosine-induced cell death. Prior to investigating these mechanisms, cell death by 8-amino-adenosine was characterized. 8-Amino-adenosine activates PARP cleavage and induces the caspase cascade. 8-Amino-adenosine increases Annexin V binding and the mitochondrial membrane permeability in wild-type MEF cells. In BAX/BAK deficient MEF cells, 8-amino-adenosine decreases the mitochondrial membrane permeability and induces autophagy. ^ Once cell death was characterized, the mechanisms of 8-amino-adenosine transcription inhibition were assessed. It was established that 8-aminoadenosine treatment causes 8-amino-ATP accumulation and decreases the intracellular ATP concentration, resulting in RNA synthesis inhibition. Several other mechanisms are identified. First, a relationship between ATP decline by 8-amino-adenosine or other known ATP synthesis inhibitors and RNA synthesis is established indicating that effects on cellular bioenergy, regardless of the mechanism of ATP decline, can decrease RNA synthesis. Second, 8-aminoadenosine treatment decreases the phosphorylation of serine residues on the RNA polymerase II C-terminal domain which regulates transcription initiation and elongation. Third, evidence is provided to demonstrate 8-amino-ATP is a substrate for RNA synthesis. Fourth, 8-amino-ATP is incorporated at the 3'-terminal position leading to chain termination. Finally, in vitro transcription assays show that 8-amino-ATP may compete with ATP to decrease de novo mRNA synthesis. Overall, this work demonstrates 8-amino-adenosine is a cytotoxic nucleoside analog that functions to inhibit RNA transcription through multiple mechanisms. ^