993 resultados para Statistical distributions
Resumo:
Antibody in human sera that induces lysis of sheep erythrocytes in hemolytic assay was investigated. The present study showed that the presence in serum of the thermostable cytolytic anti-sheep red blood cells antibodies is dependent on the Schistosoma mansoni infection, and this is more frequent in adults than in children. The thermostable characteristic of hemolysins in normal sera was not dependent on the presence of Ascaris lumbricoides, Trichuris trichiura or hookworm geo-helminths. Further, thermostable complement-activating heterophile antibodies were noticed in children in association with massive number of S. mansoni eggs. The results were obtained by using the z- and the chi-square tests. The z-test allows us to formulate a one-sided alternative, i.e., a tendency of one of the attributes. On the other hand, the chi-square test analyzes the independence between attributes by using a contingency table. Besides the obtained results being interesting in the field of schistosomiasis mansoni, they can provide a new insight into the use of statistics in medical science.
Resumo:
This work aims to characterize levels and phase distribution of polycyclic aromatic hydrocarbons (PAHs) in indoor air of preschool environment and to assess the impact of outdoor PAH emissions to indoor environment. Gaseous and particulate (PM1 and PM2.5) PAHs (16 USEPA priority pollutants, plus dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were concurrently sampled indoors and outdoors in one urban preschool located in north of Portugal for 35 days. The total concentration of 18 PAHs (ΣPAHs) in indoor air ranged from 19.5 to 82.0 ng/m3; gaseous compounds (range of 14.1–66.1 ng/m3) accounted for 85% ΣPAHs. Particulate PAHs (range 0.7–15.9 ng/m3) were predominantly associated with PM1 (76% particulate ΣPAHs) with 5-ring PAHs being the most abundant. Mean indoor/outdoor ratios (I/O) of individual PAHs indicated that outdoor emissions significantly contributed to PAH indoors; emissions from motor vehicles and fuel burning were the major sources.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
An important aspect of tropical medicine is analysis of geographic aspects of risk of disease transmission, which for lack of detailed public health data must often be reduced to an understanding of the distributions of critical species such as vectors and reservoirs. We examine the applicability of a new technique, ecological niche modeling, to the challenge of understanding distributions of such species based on municipalities in the state of São Paulo in which a group of 5 Lutzomyia sandfly species have been recorded. The technique, when tested based on independent occurrence data, yielded highly significant predictions of species' distributions; minimum sample sizes for effective predictions were around 40 municipalities.
Resumo:
RESUMO: O cancro de mama e o mais frequente diagnoticado a indiv duos do sexo feminino. O conhecimento cientifico e a tecnologia tem permitido a cria ção de muitas e diferentes estrat egias para tratar esta patologia. A Radioterapia (RT) est a entre as diretrizes atuais para a maioria dos tratamentos de cancro de mama. No entanto, a radia ção e como uma arma de dois canos: apesar de tratar, pode ser indutora de neoplasias secund arias. A mama contralateral (CLB) e um orgão susceptivel de absorver doses com o tratamento da outra mama, potenciando o risco de desenvolver um tumor secund ario. Nos departamentos de radioterapia tem sido implementadas novas tecnicas relacionadas com a radia ção, com complexas estrat egias de administra ção da dose e resultados promissores. No entanto, algumas questões precisam de ser devidamente colocadas, tais como: E seguro avançar para tecnicas complexas para obter melhores indices de conformidade nos volumes alvo, em radioterapia de mama? O que acontece aos volumes alvo e aos tecidos saudaveis adjacentes? Quão exata e a administração de dose? Quais são as limitações e vantagens das técnicas e algoritmos atualmente usados? A resposta a estas questões e conseguida recorrendo a m etodos de Monte Carlo para modelar com precisão os diferentes componentes do equipamento produtor de radia ção(alvos, ltros, colimadores, etc), a m de obter uma descri cão apropriada dos campos de radia cão usados, bem como uma representa ção geometrica detalhada e a composição dos materiais que constituem os orgãos e os tecidos envolvidos. Este trabalho visa investigar o impacto de tratar cancro de mama esquerda usando diferentes tecnicas de radioterapia f-IMRT (intensidade modulada por planeamento direto), IMRT por planeamento inverso (IMRT2, usando 2 feixes; IMRT5, com 5 feixes) e DCART (arco conformacional dinamico) e os seus impactos em irradia ção da mama e na irradia ção indesejada dos tecidos saud aveis adjacentes. Dois algoritmos do sistema de planeamento iPlan da BrainLAB foram usados: Pencil Beam Convolution (PBC) e Monte Carlo comercial iMC. Foi ainda usado um modelo de Monte Carlo criado para o acelerador usado (Trilogy da VARIAN Medical Systems), no c odigo EGSnrc MC, para determinar as doses depositadas na mama contralateral. Para atingir este objetivo foi necess ario modelar o novo colimador multi-laminas High- De nition que nunca antes havia sido simulado. O modelo desenvolvido est a agora disponí vel no pacote do c odigo EGSnrc MC do National Research Council Canada (NRC). O acelerador simulado foi validado com medidas realizadas em agua e posteriormente com c alculos realizados no sistema de planeamento (TPS).As distribui ções de dose no volume alvo (PTV) e a dose nos orgãos de risco (OAR) foram comparadas atrav es da an alise de histogramas de dose-volume; an alise estati stica complementar foi realizadas usando o software IBM SPSS v20. Para o algoritmo PBC, todas as tecnicas proporcionaram uma cobertura adequada do PTV. No entanto, foram encontradas diferen cas estatisticamente significativas entre as t ecnicas, no PTV, nos OAR e ainda no padrão da distribui ção de dose pelos tecidos sãos. IMRT5 e DCART contribuem para maior dispersão de doses baixas pelos tecidos normais, mama direita, pulmão direito, cora cão e at e pelo pulmão esquerdo, quando comparados com as tecnicas tangenciais (f-IMRT e IMRT2). No entanto, os planos de IMRT5 melhoram a distribuição de dose no PTV apresentando melhor conformidade e homogeneidade no volume alvo e percentagens de dose mais baixas nos orgãos do mesmo lado. A t ecnica de DCART não apresenta vantagens comparativamente com as restantes t ecnicas investigadas. Foram tamb em identi cadas diferen cas entre os algoritmos de c alculos: em geral, o PBC estimou doses mais elevadas para o PTV, pulmão esquerdo e cora ção, do que os algoritmos de MC. Os algoritmos de MC, entre si, apresentaram resultados semelhantes (com dferen cas at e 2%). Considera-se que o PBC não e preciso na determina ção de dose em meios homog eneos e na região de build-up. Nesse sentido, atualmente na cl nica, a equipa da F sica realiza medi ções para adquirir dados para outro algoritmo de c alculo. Apesar de melhor homogeneidade e conformidade no PTV considera-se que h a um aumento de risco de cancro na mama contralateral quando se utilizam t ecnicas não-tangenciais. Os resultados globais dos estudos apresentados confirmam o excelente poder de previsão com precisão na determinação e c alculo das distribui ções de dose nos orgãos e tecidos das tecnicas de simulação de Monte Carlo usados.---------ABSTRACT:Breast cancer is the most frequent in women. Scienti c knowledge and technology have created many and di erent strategies to treat this pathology. Radiotherapy (RT) is in the actual standard guidelines for most of breast cancer treatments. However, radiation is a two-sword weapon: although it may heal cancer, it may also induce secondary cancer. The contralateral breast (CLB) is a susceptible organ to absorb doses with the treatment of the other breast, being at signi cant risk to develop a secondary tumor. New radiation related techniques, with more complex delivery strategies and promising results are being implemented and used in radiotherapy departments. However some questions have to be properly addressed, such as: Is it safe to move to complex techniques to achieve better conformation in the target volumes, in breast radiotherapy? What happens to the target volumes and surrounding healthy tissues? How accurate is dose delivery? What are the shortcomings and limitations of currently used treatment planning systems (TPS)? The answers to these questions largely rely in the use of Monte Carlo (MC) simulations using state-of-the-art computer programs to accurately model the di erent components of the equipment (target, lters, collimators, etc.) and obtain an adequate description of the radiation elds used, as well as the detailed geometric representation and material composition of organs and tissues. This work aims at investigating the impact of treating left breast cancer using di erent radiation therapy (RT) techniques f-IMRT (forwardly-planned intensity-modulated), inversely-planned IMRT (IMRT2, using 2 beams; IMRT5, using 5 beams) and dynamic conformal arc (DCART) RT and their e ects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB TPS were used: Pencil Beam Convolution (PBC)and commercial Monte Carlo (iMC). Furthermore, an accurate Monte Carlo (MC) model of the linear accelerator used (a Trilogy R VARIANR) was done with the EGSnrc MC code, to accurately determine the doses that reach the CLB. For this purpose it was necessary to model the new High De nition multileaf collimator that had never before been simulated. The model developed was then included on the EGSnrc MC package of National Research Council Canada (NRC). The linac was benchmarked with water measurements and later on validated against the TPS calculations. The dose distributions in the planning target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose-volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all the techniques provided adequate coverage of the PTV. However, statistically significant dose di erences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung, heart and even the left lung than tangential techniques (f-IMRT and IMRT2). However,IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Di erences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the MC algorithms predicted. The MC algorithms presented similar results (within 2% di erences). The PBC algorithm was considered not accurate in determining the dose in heterogeneous media and in build-up regions. Therefore, a major e ort is being done at the clinic to acquire data to move from PBC to another calculation algorithm. Despite better PTV homogeneity and conformity there is an increased risk of CLB cancer development, when using non-tangential techniques. The overall results of the studies performed con rm the outstanding predictive power and accuracy in the assessment and calculation of dose distributions in organs and tissues rendered possible by the utilization and implementation of MC simulation techniques in RT TPS.
Analysis of metabolic flux distributions in relation to the extracellular environment in Avian cells
Resumo:
Continuous cell lines that proliferate in chemically defined and simple media have been highly regarded as suitable alternatives for vaccine production. One such cell line is the AG1.CR.pIX avian cell line developed by PROBIOGEN. This cell line can be cultivated in a fully scalable suspension culture and adapted to grow in chemically defined, calf serum free, medium [1]–[5]. The medium composition and cultivation strategy are important factors for reaching high virus titers. In this project, a series of computational methods was used to simulate the cell’s response to different environments. The study is based on the metabolic model of the central metabolism proposed in [1]. In a first step, Metabolic Flux Analysis (MFA) was used along with measured uptake and secretion fluxes to estimate intracellular flux values. The network and data were found to be consistent. In a second step, Flux Balance Analysis (FBA) was performed to access the cell’s biological objective. The objective that resulted in the best predicted results fit to the experimental data was the minimization of oxidative phosphorylation. Employing this objective, in the next step Flux Variability Analysis (FVA) was used to characterize the flux solution space. Furthermore, various scenarios, where a reaction deletion (elimination of the compound from the media) was simulated, were performed and the flux solution space for each scenario was calculated. Growth restrictions caused by essential and non-essential amino acids were accurately predicted. Fluxes related to the essential amino acids uptake and catabolism, the lipid synthesis and ATP production via TCA were found to be essential to exponential growth. Finally, the data gathered during the previous steps were analyzed using principal component analysis (PCA), in order to assess potential changes in the physiological state of the cell. Three metabolic states were found, which correspond to zero, partial and maximum biomass growth rate. Elimination of non-essential amino acids or pyruvate from the media showed no impact on the cell’s assumed normal metabolic state.
Resumo:
A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of s√=8 TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb−1. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the Standard Model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95% CL; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.
Resumo:
The associated production of a Higgs boson and a top-quark pair, tt¯H, in proton-proton collisions is addressed in this paper for a center of mass energy of 13TeV at the LHC. Dileptonic final states of tt¯H events with two oppositely charged leptons and four jets from the decays t→bW+→bℓ+νℓ, t¯→b¯W−→b¯ℓ−ν¯ℓ and h→bb¯, are used. Signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed by applying a kinematic fit. New angular distributions of the decay products as well as angular asymmetries are explored in order to improve discrimination of tt¯H signal events over the dominant irreducible background contribution, tt¯bb¯. Even after the full kinematic fit reconstruction of the events, the proposed angular distributions and asymmetries are still quite different in the tt¯H signal and the dominant background (tt¯bb¯).
Resumo:
The ATLAS Collaboration measures the inclusive production of Z bosons via their decays into electron and muon pairs in p+Pb collisions at sNN−−−√=5.02TeV at the Large Hadron Collider. The measurements are made using data corresponding to integrated luminosities of 29.4 and 28.1 nb−1 for Z→ee and Z→μμ, respectively. The results from the two channels are consistent and combined to obtain a cross section times the Z→ℓℓ branching ratio, integrated over the rapidity region ∣∣y∗Z|<3.5, of 139.8±4.8(statistical)±6.2(systematic)±3.8 (luminosity) nb. Differential cross sections are presented as functions of the Z boson rapidity and transverse momentum and compared with models based on parton distributions both with and without nuclear corrections. The centrality dependence of Z boson production in p+Pb collisions is measured and analyzed within the framework of a standard Glauber model and the model's extension for fluctuations of the underlying nucleon-nucleon scattering cross section.
Resumo:
Dissertação de mestrado em Estatística
Resumo:
Nuevas biotecnologías, como los marcadores de la molécula de ADN, permiten caracterizar el genoma vegetal. El uso de la información genómica producida para cientos o miles de posiciones cromosómicas permite identificar genotipos superiores en menos tiempo que el requerido por la selección fenotípica tradicional. La mayoría de los caracteres de las especies vegetales cultivadas de importancia agronómica y económica, son controlados por poli-genes causantes de un fenotipo con variación continua, altamente afectados por el ambiente. Su herencia es compleja ya que resulta de la interacción entre genes, del mismo o distinto cromosoma, y de la interacción del genotipo con el ambiente, dificultando la selección. Estas biotecnologías producen bases de datos con gran cantidad de información y estructuras complejas de correlación que requieren de métodos y modelos biométricos específicos para su procesamiento. Los modelos estadísticos focalizados en explicar el fenotipo a partir de información genómica masiva requieren la estimación de un gran número de parámetros. No existen métodos, dentro de la estadística paramétrica capaces de abordar este problema eficientemente. Además los modelos deben contemplar no-aditividades (interacciones) entre efectos génicos y de éstos con el ambiente que son también dificiles de manejar desde la concepción paramétrica. Se hipotetiza que el análisis de la asociación entre caracteres fenotípicos y genotipos moleculares, caracterizados por abundante información genómica, podría realizarse eficientemente en el contexto de los modelos mixtos semiparamétricos y/o de métodos no-paramétricos basados en técnicas de aprendizaje automático. El objetivo de este proyecto es desarrollar nuevos métodos para análisis de datos que permitan el uso eficiente de información genómica masiva en evaluaciones genéticas de interés agro-biotecnológico. Los objetivos específicos incluyen la comparación, respecto a propiedades estadísticas y computacionales, de estrategias analíticas paramétricas con estrategias semiparamétricas y no-paramétricas. Se trabajará con aproximaciones por regresión del análisis de loci de caracteres cuantitativos bajo distintas estrategias y escenarios (reales y simulados) con distinto volúmenes de datos de marcadores moleculares. En el área paramétrica se pondrá especial énfasis en modelos mixtos, mientras que en el área no paramétrica se evaluarán algoritmos de redes neuronales, máquinas de soporte vectorial, filtros multivariados, suavizados del tipo LOESS y métodos basados en núcleos de reciente aparición. La propuesta semiparamétrica se basará en una estrategia de análisis en dos etapas orientadas a: 1) reducir la dimensionalidad de los datos genómicos y 2) modelar el fenotipo introduciendo sólo las señales moleculares más significativas. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, nuevas herramientas y procedimientos de análisis que permitan maximizar la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos y su aplicación en desarrollos agro-biotecnológicos.
Resumo:
El objetivo de este proyecto, enmarcado en el área de metodología de análisis en bioingeniería-biotecnología aplicadas al estudio del cancer, es el análisis y caracterización a través modelos estadísticos con efectos mixtos y técnicas de aprendizaje automático, de perfiles de expresión de proteínas y genes de las vías metabolicas asociadas a progresión tumoral. Dicho estudio se llevará a cabo mediante la utilización de tecnologías de alto rendimiento. Las mismas permiten evaluar miles de genes/proteínas en forma simultánea, generando así una gran cantidad de datos de expresión. Se hipotetiza que para un análisis e interpretación de la información subyacente, caracterizada por su abundancia y complejidad, podría realizarse mediante técnicas estadístico-computacionales eficientes en el contexto de modelos mixtos y técnias de aprendizaje automático. Para que el análisis sea efectivo es necesario contemplar los efectos ocasionados por los diferentes factores experimentales ajenos al fenómeno biológico bajo estudio. Estos efectos pueden enmascarar la información subycente y así perder informacion relavante en el contexto de progresión tumoral. La identificación de estos efectos permitirá obtener, eficientemente, los perfiles de expresión molecular que podrían permitir el desarrollo de métodos de diagnóstico basados en ellos. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, herramientas y procedimientos de análisis que maximicen la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos/proteómicos que permitan extraer información biológica relevante pertinente al análisis, clasificación o predicción de cáncer, el diseño de tratamientos y terapias específicos y el mejoramiento de los métodos de detección como así tambien aportar al entendimieto de la progresión tumoral mediante análisis computacional intensivo.