993 resultados para Statistical Error
Resumo:
შესწავლილია ხილვადობის სიშორის სტატისტიკური სტრუქტურა თბილისში 1980-დან 2008 წლამდე პერიოდისათვის. გამოყენებულია საქართველოს ჰიდრომეტეოროლოგიური დეპარტამენტის მონაცემები ხილვადობის სხვადასხვა ბალიანობის მქონე დღეების რიცხვის შესახებ წელიწადში 9, 12 და 15 საათზე დაკვირვებებისათვის.
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2011
Resumo:
The classical central limit theorem states the uniform convergence of the distribution functions of the standardized sums of independent and identically distributed square integrable real-valued random variables to the standard normal distribution function. While first versions of the central limit theorem are already due to Moivre (1730) and Laplace (1812), a systematic study of this topic started at the beginning of the last century with the fundamental work of Lyapunov (1900, 1901). Meanwhile, extensions of the central limit theorem are available for a multitude of settings. This includes, e.g., Banach space valued random variables as well as substantial relaxations of the assumptions of independence and identical distributions. Furthermore, explicit error bounds are established and asymptotic expansions are employed to obtain better approximations. Classical error estimates like the famous bound of Berry and Esseen are stated in terms of absolute moments of the random summands and therefore do not reflect a potential closeness of the distributions of the single random summands to a normal distribution. Non-classical approaches take this issue into account by providing error estimates based on, e.g., pseudomoments. The latter field of investigation was initiated by work of Zolotarev in the 1960's and is still in its infancy compared to the development of the classical theory. For example, non-classical error bounds for asymptotic expansions seem not to be available up to now ...
Resumo:
The general properties of POISSON distributions and their relations to the binomial distribuitions are discussed. Two methods of statistical analysis are dealt with in detail: X2-test. In order to carry out the X2-test, the mean frequency and the theoretical frequencies for all classes are calculated. Than the observed and the calculated frequencies are compared, using the well nown formula: f(obs) - f(esp) 2; i(esp). When the expected frequencies are small, one must not forget that the value of X2 may only be calculated, if the expected frequencies are biger than 5. If smaller values should occur, the frequencies of neighboroughing classes must ge pooled. As a second test reintroduced by BRIEGER, consists in comparing the observed and expected error standard of the series. The observed error is calculated by the general formula: δ + Σ f . VK n-1 where n represents the number of cases. The theoretical error of a POISSON series with mean frequency m is always ± Vm. These two values may be compared either by dividing the observed by the theoretical error and using BRIEGER's tables for # or by dividing the respective variances and using SNEDECOR's tables for F. The degree of freedom for the observed error is one less the number of cases studied, and that of the theoretical error is always infinite. In carrying out these tests, one important point must never be overlloked. The values for the first class, even if no concrete cases of the type were observed, must always be zero, an dthe value of the subsequent classes must be 1, 2, 3, etc.. This is easily seen in some of the classical experiments. For instance in BORKEWITZ example of accidents in Prussian armee corps, the classes are: no, one, two, etc., accidents. When counting the frequency of bacteria, these values are: no, one, two, etc., bacteria or cultures of bacteria. Ins studies of plant diseases equally the frequencies are : no, one, two, etc., plants deseased. Howewer more complicated cases may occur. For instance, when analising the degree of polyembriony, frequently the case of "no polyembryony" corresponds to the occurrence of one embryo per each seed. Thus the classes are not: no, one, etc., embryo per seed, but they are: no additional embryo, one additional embryo, etc., per seed with at least one embryo. Another interestin case was found by BRIEGER in genetic studies on the number os rows in maize. Here the minimum number is of course not: no rows, but: no additional beyond eight rows. The next class is not: nine rows, but: 10 rows, since the row number varies always in pairs of rows. Thus the value of successive classes are: no additional pair of rows beyond 8, one additional pair (or 10 rows), two additional pairs (or 12 rows) etc.. The application of the methods is finally shown on the hand of three examples : the number of seeds per fruit in the oranges M Natal" and "Coco" and in "Calamondin". As shown in the text and the tables, the agreement with a POISSON series is very satisfactory in the first two cases. In the third case BRIEGER's error test indicated a significant reduction of variability, and the X2 test showed that there were two many fruits with 4 or 5 seeds and too few with more or with less seeds. Howewer the fact that no fruit was found without seed, may be taken to indicate that in Calamondin fruits are not fully parthenocarpic and may develop only with one seed at the least. Thus a new analysis was carried out, on another class basis. As value for the first class the following value was accepted: no additional seed beyond the indispensable minimum number of one seed, and for the later classes the values were: one, two, etc., additional seeds. Using this new basis for all calculations, a complete agreement of the observed and expected frequencies, of the correspondig POISSON series was obtained, thus proving that our hypothesis of the impossibility of obtaining fruits without any seed was correct for Calamondin while the other two oranges were completely parthenocarpic and fruits without seeds did occur.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2015
Resumo:
This paper dis cusses the fitting of a Cobb-Doug las response curve Yi = αXβi, with additive error, Yi = αXβi + e i, instead of the usual multiplicative error Yi = αXβi (1 + e i). The estimation of the parameters A and B is discussed. An example is given with use of both types of error.
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Univ., Dissertation, 2015
Resumo:
v.39:no.3(1978)
Resumo:
This paper deals about the nematocysts like a source of biometric information for comparison between the species Hydra vulgaris Pallas, 1766, Hydra vulgaris pedunculata Deserti et al., 2011 and Hydra pseudoligactis (Hyman, 1931). This biometric tool lets us carry out statistical comparisons and adding these results to the identification of specimens from different classificatory groups. In this particular study, we obtained significant differences between species, individuals of each species and nematocysts type when compared the biometry of its nematocysts. Another result was the variation in of particular nematocysts, like atrichous isorhiza and holotrichous isorhiza for the species H. vulgaris in relation to the column size.
Resumo:
Based on an behavioral equilibrium exchange rate model, this paper examines the determinants of the real effective exchange rate and evaluates the degree of misalignment of a group of currencies since 1980. Within a panel cointegration setting, we estimate the relationship between exchange rate and a set of economic fundamentals, such as traded-nontraded productivity differentials and the stock of foreign assets. Having ascertained the variables are integrated and cointegrated, the long-run equilibrium value of the fundamentals are estimated and used to derive equilibrium exchange rates and misalignments. Although there is statistical homogeneity, some structural differences were found to exist between advanced and emerging economies.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
The purpose of this paper is to review the scientific literature from August 2007 to July 2010. The review is focused on more than 420 published papers. The review will not cover information coming from international meetings available only in abstract form. Fingermarks constitute an important chapter with coverage of the identification process as well as detection techniques on various surfaces. We note that the research has been very dense both at exploring and understanding current detection methods as well as bringing groundbreaking techniques to increase the number of marks detected from various objects. The recent report from the US National Research Council (NRC) is a milestone that has promoted a critical discussion on the state of forensic science and its associated research. We can expect a surge of interest in research in relation to cognitive aspect of mark and print comparison, establishment of relevant forensic error rates and statistical modelling of the selectivity of marks' attributes. Other biometric means of forensic identification such as footmarks or earmarks are also covered in the report. Compared to previous years, we noted a decrease in the number of submission in these areas. No doubt that the NRC report has set the seed for further investigation of these fields as well.