870 resultados para Spinal cord Growth


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Functional regeneration of organs upon injury is a key process for animals survival. Contrary to humans, some vertebrates are remarkably competent in regenerating after acute organ or appendage lesions. This advantageous skill allows overcoming limitations in repair even in adult stages, when tissues are fully developed, via a process of epimorphic regeneration. One such organism is the zebrafish, which can regenerate several organs, namely its heart, retina, spinal cord and fins. (...)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Management of chronic pain is a real challenge, and current treatments focusing on blocking neurotransmission in the pain pathway have only resulted in limited success. Activation of glia cells has been widely implicated in neuroinflammation in the central nervous system, leading to neruodegeneration in many disease conditions such as Alzheimer's and multiple sclerosis. The inflammatory mediators released by activated glial cells, such as tumor necrosis factor-α and interleukin-1β can not only cause neurodegeneration in these disease conditions, but also cause abnormal pain by acting on spinal cord dorsal horn neurons in injury conditions. Pain can also be potentiated by growth factors such as BDNF and bFGF that are produced by glia to protect neurons. Thus, glia cells can powerfully control pain when they are activated to produce various pain mediators. We will review accumulating evidence supporting an important role of microglia cells in the spinal cord for pain control under injury conditions (e.g. nerve injury). We will also discuss possible signaling mechanisms in particular MAP kinase pathways that are critical for glia control of pain. Investigating signaling mechanisms in microglia may lead to more effective management of devastating chronic pain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In vertebrates, signaling by retinoic acid (RA) is known to play an important role in embryonic development, as well as organ homeostasis in the adult. In organisms such as adult axolotls and newts, RA is also important for regeneration of the CNS, limb, tail, and many other organ systems. RA mediates many of its effects in development and regeneration through nuclear receptors, known as retinoic acid receptors (RARs) and retinoid X receptors (RXRs). This study provides evidence for an important role of the RA receptor, RAR~2, in ,( '. regeneration ofthe spinal cord and tail of the adult newt. It has previously been proposed that the ability of the nervous system to regenerate might depend on the presence or absence of this RAR~2 isoform. Here, I show for the very first time, that the regenerating spinal cord of the adult newt expresses this ~2 receptor isoform, and inhibition of retinoid signaling through this specific receptor with a selective antagonist inhibits tail and spinal cord regeneration. This provides the first evidence for a role of this receptor in this process. Another species capable of CNS ~~generation in the adult is the invertebrate, " Lymnaea stagnalis. Although RA has been detected in a small number of invertebrates (including Lymnaea), the existence and functional roles of the retinoid receptors in most invertebrate non-chordates, have not been previously studied. It has been widely believed, however, that invertebrate non-chordates only possess the RXR class of retinoid receptors, but not the RARs. In this study, a full-length RXR cDNA has been cloned, which was the first retinoid receptor to be discovered in Lymnaea. I then went on to clone the very first full-length RAR eDNA from any non-chordate, invertebrate species. The functional role of these receptors was examined, and it was shown that normal molluscan development was altered, to varying degrees, by the presence of various RXR and RAR agonists or antagonists. The resulting disruptions in embryogenesis ranged from eye and shell defects, to complete lysis of the early embryo. These studies strongly suggest an important role for both the RXR and RAR in non-chordate development. The molluscan RXR and RAR were also shown to be expressed in the adult, nonregenerating eNS, as well as in individual motor neurons regenerating in culture. More specifically, their expression displayed a non-nuclear distfibution, suggesting a possible non-genomic role for these 'nuclear' receptors. It was shown that immunoreactivity for the RXR was present in almost all regenerating growth cones, and (together with N. Farrar) it was shown that this RXR played a novel, non-genomic role in mediating growth cone turning toward retinoic acid. Immunoreactivity for the novel invertebrate RAR was also found in the regenerating growth cones, but future work will be required to determine its functional role in nerve cell regeneration. Taken together, these data provide evidence for the importance of these novel '. retinoid receptors in development and regeneration, particularly in the adult nervous system, and the conservation of their effects in mediating RA signaling from invertebrates to vertebrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vitamin A metabolite, retinoic acid (RA), is known to play a crucial role in several developmental processes including axial patterning and differentiation. More recently, RA has been implicated in the regenerative process acting through its classical signaling pathway, the nuclear receptors, retinoic acid receptor (RAR) and retinoid X receptor (RXR), to mediate gene transcription. Moreover, RA has been shown to act as a guidance molecule for growth cones of regenerating motorneurons of the pond snail, Lymnaea stagnalis. Our lab has recently shown that RA can induce this morphological response independent of nuclear transcription, however, the role of the retinoid receptors in RA-induced chemoattraction is still unknown. Here, I show that the retinoid receptors, RXR and RAR, may mediate the growth cones response to the metabolically active retinoic acid isomers, all-trans and 9-cis RA, in Lymnaea stagnalis. Data presented here show that both an RXR and RAR antagonist can block growth cone turning in response to application of both isomers. Because no prior investigations have shown growth cone turning of individual vertebrate neurons, I aimed to show that both retinoic acid isomers were capable of inducing growth cone turning of embryonic spinal cord neurons in the frog, Xenopus laevis. For the first time in Xenopus, I showed that both all-trans and 9-cis RA were able to induce significantly more neurite outgrowth from cultured embryonic spinal cord neurons and induce positive growth cone turning of individual growth cones. In addition, I showed that the presence of the RXR antagonist, HX531, blocked 9-cis RA-induced growth cone turning and the RARβ antagonist, LE135, blocked all-trans RA-induced growth cone turning in this species. Evidence provided here shows for the first time, conservation of retinoic acid-induced growth cone turning in a vertebrate model system. In addition, these data show that the receptors involved in this morphological response may be the same in vertebrates and invertebrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999.5 B56 D64 2007

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1-/- spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop a HPLC–MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1-/- mouse endogenous opioid system is hampered and therefore affect significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1-/- spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p < 0.0001). No significant concentration differences were observed in mouse Tac1-/- spinal cords for Met-Enk and CGRP. The analysis of Tac1-/- mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neuroscience is the study of'tbe ne rvous system , including the i - ; . in, spinal cord and peripheral nerves . Neurons are the basic cells of the brain and nervous system which exerts its functional role through various neurotransmitters and receptor systems . The activity of a nen ren depends on the balance between the number of excitatory and inhibito r y processes affecting it, both processes occurring individually and sin ,tlte-' ,ieously. The functional bal,ince of different neurotransmitters such as Acct >>lcholine (Ach), Dopamine (DA), Serotonin (5-1-17), Nor epinepbri,te (N.1 j, Epinephrine (LPI), Glutamate and Gamma amino butyric acid (GA BA) regulates the growth , division and other vital functions ofa normal cell / organisin (Sudha, 1 998). The micro-environ ; nertt of the cell is controlled / the macro-environment that surrounds the individual. Any change in the cell environment causes imbalance in cell homeostasis and f,ntction. Pollution is a significant cause of imbalance caused iii the inacYcenvironment. Interaction with polluted environments can have an adverse impact on the health of humans. The alarming rise in enviromilmieil cont.iniin :rtion has been linked to rises in levels of pesticides, ndltstr al effluents, domestic Waste, car exhausts and other anthropogenic activities. Persistent exposures to contaminant cause a negative imp,-, on brain health and development . Pollution also causes a change in the neurotransmitters and their receptor function leading to earl.;' recurrence of neurodcge,terative disorders such as flypoxia , Alzbeimers's and Huntington 's disease early in life.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments In many cases, suitable treatment is problematic as the therapeutic target remains unknown Basic fibroblast growth factor (bFGF, FGF 2) is involved in neuronal maintenance and wound repair following nervous system lesions It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances Peripheral cranial somatic motor neurons, i e hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF 2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life Moreover, the modulatory effects of astroglial FGF 2 and the Ca+2 binding protein S100 beta have been postulated in paracrine mechanisms after neuronal lesions In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72 h or 11 days Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, ghat fibrillary acidic protein (GFAP, as a marker of astrocytes), S100 beta and FGF-2 The number of Nissl positive neurons of axotomized XII nucleus did not differ from controls The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72 h and 11 days after the surgery The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus, however, the nerve transection increased the number of FGF-2 ghat profiles by 72 h and 11 days Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF 2 immunoreactivity in axotomized XII neurons by 72 h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of ghat nuclei by 72h and 11 days after the two lesions S100 beta decreased in astrocytes of 11-day transected XII nucleus The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology (C) 2009 Elsevier GmbH All rights reserved

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The morphogen Sonic Hedgehog (SHH) plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: We investigated, with magnetic resonance imaging, the distance of the dura mater to the spinal cord in patients without spinal or medullar disease at the 2nd, 5th, and 10th thoracic segments.METHODS: Fifty patients in the supine position underwent magnetic resonance imaging. Medial sagittal slices of the 2nd, 5th, and 10th thoracic segments were measured for the relative distances using the 1.5-T superconducting system (Gyroscan Intera, Philips Medical Systems, Best, the Netherlands). In 10 patients, the angles relative to the tangent at the insertion point on the skin were measured.RESULTS: The posterior dural-spinal cord distance is significantly greater at the midthoracic region (5th thoracic = 5.8 +/- 0.8 mm) than at the upper (2nd thoracic = 3.9 +/- 0.8 mm) and lower thoracic levels (10th thoracic = 4.1 +/- 1.0 mm) (P < 0.015). There were no differences between interspaces T2 and 110. There was no correlation between age and the measured distance between the dura mater and the spinal cord. The entry angle of the needle at T2 was 9.0 degrees +/- 2.5 degrees; at T5, 45.0 degrees +/- 7.4 degrees; and at T10, 9.50 degrees +/- 4.2 degrees.CONCLUSIONS: This study demonstrated that there is greater depth of the posterior subarachnoid space at the T2, T5, and T10 levels. The greater distance was found at T5. (Anesth Analg 2010;110:1494-5)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A prática regular de exercícios físicos previne e combate várias doenças ao longo do tempo, destacando-se como excelente ferramenta terapêutica para o tratamento de lesões no sistema nervoso central (SNC). Após uma transecção (completa ou incompleta/hemissecção) da medula espinhal, células gliais reativas secretam substâncias inibitórias à regeneração axonal como, por exemplo, as moléculas de proteoglicanas de sulfato de condroitina (PGSCs) que exercem papel importante na formação de uma barreira físico-química, chamada cicatriz glial, que impede o crescimento dos axônios danificados pela lesão. Pesquisas que envolvem modelo experimental de lesão da medula espinhal e reabilitação por exercício físico têm obtido promissores resultados. No entanto, os mecanismos fisiológicos e moleculares pelos quais promovem esses resultados positivos ainda são pouco conhecidos. O objetivo do presente trabalho foi analisar a recuperação da função motora da pata posterior após protocolo de exercício físico voluntario em modelo experimental de hemissecção da medula espinhal e investigar dois mecanismos moleculares envolvidos na recuperação funcional: a degradação de PGSCs nas redes perineuronais e acetilação de histonas. Para isso, vinte e quatro (24) ratos da linhagem Wistar (Rattus novergicus) foram utilizados e separados em 3 grupos (controle, treinados e não treinados). Com exceção do grupo controle, todos os animais foram habituados a rodas de corridas e em seguidas foram submetidos a uma cirurgia experimental de hemissecção da medula espinhal, na altura da 8a vertebra torácica. Nossos resultados demonstraram que o exercício voluntário em rodas de corrida após lesão experimental da medula espinhal promoveu recuperação da função motora da pata posterior afetada, porém não observamos diferenças qualitativas na acetilação de histonas e degradação de PGSCs entre os grupos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although there is no documented evidence that tattoo pigments can cause neurological complications, the implications of performing neuraxial anesthesia through tattooed skin are unknown. In this study, we aimed to assess whether spinal puncture performed through tattooed skin of rabbits determines changes over the spinal cord and meninges. In addition, we sought to evaluate the presence of ink fragments entrapped in spinal needles. Thirty-six young male adult rabbits, each weighing between 3400 and 3900 g and having a spine length between 38.5 and 39 cm, were divided by lot into 3 groups as follows: GI, spinal puncture through tattooed skin; GII, spinal puncture through tattooed skin and saline injection; and GIII, spinal puncture through skin free of tattoo and saline injection. After intravenous anesthesia with ketamine and xylazine, the subarachnoid space was punctured at S1-S2 under ultrasound guidance with a 22-gauge 2½ Quincke needle. Animals in GII and GIII received 5 μL/cm of spinal length (0.2 mL) of saline intrathecally. In GI, the needle tip was placed into the yellow ligament, and no solution was injected into the intrathecal space; after tattooed skin puncture, 1 mL of saline was injected through the needle over a histological slide to prepare a smear that was dyed by the Giemsa method to enable tissue identification if present. All animals remained in captivity for 21 days under medical observation and were killed by decapitation. The lumbosacral spinal cord portion was removed for histological analysis using hematoxylin-eosin stain. None of the animals had impaired motor function or decreased nociception during the period of clinical observation. None of the animals from the control group (GIII) showed signs of injuries to meninges. In GII, however, 4 animals presented with signs of meningeal injury. The main histological changes observed were focal areas of perivascular lymphoplasmacyte infiltration in the pia mater and arachnoid. There was no signal of injury in neural tissue in any animal of both groups. Tissue coring containing ink pigments was noted in all GI smears from the spinal needles used to puncture the tattooed skin. On the basis of the present results, intrathecal injection of saline through a needle inserted through tattooed skin is capable of producing histological changes over the meninges of rabbits. Ink fragments were entrapped inside the spinal needles, despite the presence of a stylet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)