933 resultados para Spinal column
Resumo:
The TetraEther indeX of 86 carbon atoms (TEX86) temperature proxy is widely used in reconstructions of past sea surface temperature. Most current calibrations are based on surface sediment distributions of the glycerol dialkyl glycerol tetraether lipids (GDGTs) that comprise TEX86 and assume that these GDGTs are exported from the upper mixed layer. However, GDGT export from deeper waters could impact sedimentary GDGT distributions and therefore TEX86 paleothermometry. Here we examine GDGT distributions in suspended particulate matter (SPM) and underlying sediments collected from the Southeast Atlantic Ocean. Our results reveal different GDGT distributions - specifically the ratio between GDGTs bearing 2 vs. 3 cyclopentyl moieties, [2/3] ratios - between surface, subsurface (>50-200 m) and deep water (>200 m) SPM, which suggests the occurrence of in situ (deep) production that is not apparent when considering TEX86. The GDGT distributions in sediments match those of subsurface waters rather than surface waters, suggesting that they have not been preferentially derived from the upper mixed layer; this is consistent with GDGT abundances being highest in shallow subsurface SPM (˜100 to 200 m). It remains unclear what governs the different [2/3] ratios throughout the water column, but it is likely related to a combination of temperature and thaumarchaeotal community structure.
Resumo:
short doi:10/rf8 full doi:10.5285/f014becf-d6d6-3bb9-e044-000b5de50f38
Resumo:
The majority of randomized clinical trials (RCTs) of spinal manipulative therapy have not adequately de?ned the terms ‘mobilization’ and ‘manipulation’, nor distinguished between these terms in reporting the trial interventions. The purpose of this study was to describe the spinal manipulative therapy techniques utilized within a RCT of manipulative therapy (MT; n=80), interferential therapy (IFT; n=80), and a combination of both (CT; n=80) for people with acute low back pain (LBP). Spinal manipulative therapy was de?ned as any ‘mobilization’ (low velocity manual force without a thrust) or ‘manipulation’ (high velocity
thrust) techniques of the spine described by Maitland and Cyriax.
The 16 physiotherapists, all members of the Society of Orthopaedic Medicine, utilized three spinal manipulative therapy patterns in the RCT: Maitland Mobilization (40.4%, n=59), Maitland Mobilization/Cyriax Manipulation (40.4%, n=59) and Cyriax Manipulation (19.1%, n=28). There was a signi?cant difference between the MT and CT groups in their usage of spinal manipulative therapy techniques (w2=9.178; df=2;P=0.01); subjects randomized to the CT group received three times more Cyriax Manipulation (29.2%, n=21/72) than those randomized to the MT group (9.5%, n=7/74; df=1; P=0.003).
The use of mobilization techniques within the trial was comparable with their usage by the general population of physiotherapists in Britain and Ireland for LBP management. However, the usage of manipulation techniques was considerably higher than reported in physiotherapy surveys and may re?ect the postgraduate training of trial therapists.