964 resultados para Spike And Lateral Jets
Resumo:
Existe una creciente necesidad de hacer el mejor uso del agua para regadío. Una alternativa eficiente consiste en la monitorización del contenido volumétrico de agua (θ), utilizando sensores de humedad. A pesar de existir una gran diversidad de sensores y tecnologías disponibles, actualmente ninguna de ellas permite obtener medidas distribuidas en perfiles verticales de un metro y en escalas laterales de 0.1-1,000 m. En este sentido, es necesario buscar tecnologías alternativas que sirvan de puente entre las medidas puntuales y las escalas intermedias. Esta tesis doctoral se basa en el uso de Fibra Óptica (FO) con sistema de medida de temperatura distribuida (DTS), una tecnología alternativa de reciente creación que ha levantado gran expectación en las últimas dos décadas. Específicamente utilizamos el método de fibra calentada, en inglés Actively Heated Fiber Optic (AHFO), en la cual los cables de Fibra Óptica se utilizan como sondas de calor mediante la aplicación de corriente eléctrica a través de la camisa de acero inoxidable, o de un conductor eléctrico simétricamente posicionado, envuelto, alrededor del haz de fibra óptica. El uso de fibra calentada se basa en la utilización de la teoría de los pulsos de calor, en inglés Heated Pulsed Theory (HPP), por la cual el conductor se aproxima a una fuente de calor lineal e infinitesimal que introduce calor en el suelo. Mediante el análisis del tiempo de ocurrencia y magnitud de la respuesta térmica ante un pulso de calor, es posible estimar algunas propiedades específicas del suelo, tales como el contenido de humedad, calor específico (C) y conductividad térmica. Estos parámetros pueden ser estimados utilizando un sensor de temperatura adyacente a la sonda de calor [método simple, en inglés single heated pulsed probes (SHPP)], ó a una distancia radial r [método doble, en inglés dual heated pulsed probes (DHPP)]. Esta tesis doctoral pretende probar la idoneidad de los sistemas de fibra óptica calentada para la aplicación de la teoría clásica de sondas calentadas. Para ello, se desarrollarán dos sistemas FO-DTS. El primero se sitúa en un campo agrícola de La Nava de Arévalo (Ávila, España), en el cual se aplica la teoría SHPP para estimar θ. El segundo sistema se desarrolla en laboratorio y emplea la teoría DHPP para medir tanto θ como C. La teoría SHPP puede ser implementada con fibra óptica calentada para obtener medidas distribuidas de θ, mediante la utilización de sistemas FO-DTS y el uso de curvas de calibración específicas para cada suelo. Sin embargo, la mayoría de aplicaciones AHFO se han desarrollado exclusivamente en laboratorio utilizando medios porosos homogéneos. En esta tesis se utiliza el programa Hydrus 2D/3D para definir tales curvas de calibración. El modelo propuesto es validado en un segmento de cable enterrado en una instalación de fibra óptica y es capaz de predecir la respuesta térmica del suelo en puntos concretos de la instalación una vez que las propiedades físicas y térmicas de éste son definidas. La exactitud de la metodología para predecir θ frente a medidas puntuales tomadas con sensores de humedad comerciales fue de 0.001 a 0.022 m3 m-3 La implementación de la teoría DHPP con AHFO para medir C y θ suponen una oportunidad sin precedentes para aplicaciones medioambientales. En esta tesis se emplean diferentes combinaciones de cables y fuentes emisoras de calor, que se colocan en paralelo y utilizan un rango variado de espaciamientos, todo ello en el laboratorio. La amplitud de la señal y el tiempo de llegada se han observado como funciones del calor específico del suelo. Medidas de C, utilizando esta metodología y ante un rango variado de contenidos de humedad, sugirieron la idoneidad del método, aunque también se observaron importantes errores en contenidos bajos de humedad de hasta un 22%. La mejora del método requerirá otros modelos más precisos que tengan en cuenta el diámetro del cable, así como la posible influencia térmica del mismo. ABSTRACT There is an increasing need to make the most efficient use of water for irrigation. A good approach to make irrigation as efficient as possible is to monitor soil water content (θ) using soil moisture sensors. Although, there is a broad range of different sensors and technologies, currently, none of them can practically and accurately provide vertical and lateral moisture profiles spanning 0-1 m depth and 0.1-1,000 m lateral scales. In this regard, further research to fulfill the intermediate scale and to bridge single-point measurement with the broaden scales is still needed. This dissertation is based on the use of Fiber Optics with Distributed Temperature Sensing (FO-DTS), a novel approach which has been receiving growing interest in the last two decades. Specifically, we employ the so called Actively Heated Fiber Optic (AHFO) method, in which FO cables are employed as heat probe conductors by applying electricity to the stainless steel armoring jacket or an added conductor symmetrically positioned (wrapped) about the FO cable. AHFO is based on the classic Heated Pulsed Theory (HPP) which usually employs a heat probe conductor that approximates to an infinite line heat source which injects heat into the soil. Observation of the timing and magnitude of the thermal response to the energy input provide enough information to derive certain specific soil thermal characteristics such as the soil heat capacity, soil thermal conductivity or soil water content. These parameters can be estimated by capturing the soil thermal response (using a thermal sensor) adjacent to the heat source (the heating and the thermal sources are mounted together in the so called single heated pulsed probe (SHPP)), or separated at a certain distance, r (dual heated pulsed method (DHPP) This dissertation aims to test the feasibility of heated fiber optics to implement the HPP theory. Specifically, we focus on measuring soil water content (θ) and soil heat capacity (C) by employing two types of FO-DTS systems. The first one is located in an agricultural field in La Nava de Arévalo (Ávila, Spain) and employ the SHPP theory to estimate θ. The second one is developed in the laboratory using the procedures described in the DHPP theory, and focuses on estimating both C and θ. The SHPP theory can be implemented with actively heated fiber optics (AHFO) to obtain distributed measurements of soil water content (θ) by using reported soil thermal responses in Distributed Temperature Sensing (DTS) and with a soil-specific calibration relationship. However, most reported AHFO applications have been calibrated under laboratory homogeneous soil conditions, while inexpensive efficient calibration procedures useful in heterogeneous soils are lacking. In this PhD thesis, we employ the Hydrus 2D/3D code to define these soil-specific calibration curves. The model is then validated at a selected FO transect of the DTS installation. The model was able to predict the soil thermal response at specific locations of the fiber optic cable once the surrounding soil hydraulic and thermal properties were known. Results using electromagnetic moisture sensors at the same specific locations demonstrate the feasibility of the model to detect θ within an accuracy of 0.001 to 0.022 m3 m-3. Implementation of the Dual Heated Pulsed Probe (DPHP) theory for measurement of volumetric heat capacity (C) and water content (θ) with Distributed Temperature Sensing (DTS) heated fiber optic (FO) systems presents an unprecedented opportunity for environmental monitoring. We test the method using different combinations of FO cables and heat sources at a range of spacings in a laboratory setting. The amplitude and phase-shift in the heat signal with distance was found to be a function of the soil volumetric heat capacity (referred, here, to as Cs). Estimations of Cs at a range of θ suggest feasibility via responsiveness to the changes in θ (we observed a linear relationship in all FO combinations), though observed bias with decreasing soil water contents (up to 22%) was also reported. Optimization will require further models to account for the finite radius and thermal influence of the FO cables, employed here as “needle probes”. Also, consideration of the range of soil conditions and cable spacing and jacket configurations, suggested here to be valuable subjects of further study and development.
Resumo:
The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require threedimensional coupled vehicle-bridge models, wheree consideration of wheel to rail contact is a key aspect. Furthermore, an adequate evaluation of safety of rail traffic requires nonlinear models. A nonlinear coupled model is proposed here for vehicle-structure vertical and lateral dynamics. Vehicles are considered as fully three-dimensional multibody systems including gyroscopic terms and large rotation effects. The bridge structure is modeled by means of finite elements which may be of beam, shell or continuum type and may include geometric or material nonlinearities. The track geometry includes distributed track alignment irregularities. Both subsystems (bridge and vehicles) are described with coordinates in absolute reference frames, as opposed to alternative approaches which describe the multibody system with coordinates relative to the base bridge motion. The wheelrail contact employed is a semi-Hertzian model based on realistic wheel-rail profiles. It allows a detailed geometrical description of the contact patch under each wheel including multiple-point contact, flange contact and uplift. Normal and tangential stresses in each contact are integrated at each time-step to obtain the resultant contact forces. The models have been implemented within an existing finite element analysis software with multibody capabilities, Abaqus (Simulia Ltd., 2010). Further details of the model are presented in Antolín et al. (2012). Representative applications are presented for railway vehicles under lateral wind action on laterally compliant viaducts, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle.
Resumo:
The planar and axisymmetric variable-density flows induced in a quiescent gas by a concentrated source of momentum that is simultaneously either a source or a sink of energy are investigated for application to the description of the velocity and temperature far fields in laminar gaseous jets with either large or small values of the initial jet-to-ambient temperature ratio. The source fluxes of momentum and heat are used to construct the characteristic scales of velocity and length in the region where the density differences are of the order of the ambient density, which is slender for the large values of the Reynolds number considered herein. The problem reduces to the integration of the dimensionless boundary-layer conservation equations, giving a solution that depends on the gas transport properties but is otherwise free of parameters. The boundary conditions at the jet exit for integration are obtained by analysing the self-similar flow that appears near the heat source in planar and axisymmetric configurations and also near the heat sink in the planar case. Numerical integrations of the boundary-layer equations with these conditions give solutions that describe accurately the velocity and temperature fields of very hot planar and round jets and also of very cold plane jets in the far field region where the density and temperature differences are comparable to the ambient values. Simple scaling arguments indicate that the point source description does not apply, however, to cold round jets, whose far field region is not large compared with the jet development region, as verified by numerical integrations
Resumo:
A multistudy analysis of positron emission tomography data identified three right prefrontal and two left prefrontal cortical sites, as well as a region in the anterior cingulate gyrus, where neuronal activity is correlated with the maintenance of episodic memory retrieval mode (REMO), a basic and necessary condition of remembering past experiences. The right prefrontal sites were near the frontal pole [Brodmann's area (BA) 10], frontal operculum (BA 47/45), and lateral dorsal area (BA 8/9). The two left prefrontal sites were homotopical with the right frontal pole and opercular sites. The same kinds of REMO sites were not observed in any other cerebral region. Many previous functional neuroimaging studies of episodic memory retrieval have reported activations near the frontal REMO sites identified here, although their function has not been clear. Many of these, too, probably have signaled their involvement in REMO. We propose that REMO activations largely if not entirely account for the frontal hemispheric asymmetry of retrieval as described by the original hemispheric encoding retrieval asymmetry model.
Resumo:
To investigate the types of memory traces recovered by the medial temporal lobe (MTL), neural activity during veridical and illusory recognition was measured with the use of functional MRI (fMRI). Twelve healthy young adults watched a videotape segment in which two speakers alternatively presented lists of associated words, and then the subjects performed a recognition test including words presented in the study lists (True items), new words closely related to studied words (False items), and new unrelated words (New items). The main finding was a dissociation between two MTL regions: whereas the hippocampus was similarly activated for True and False items, suggesting the recovery of semantic information, the parahippocampal gyrus was more activated for True than for False items, suggesting the recovery of perceptual information. The study also yielded a dissociation between two prefrontal cortex (PFC) regions: whereas bilateral dorsolateral PFC was more activated for True and False items than for New items, possibly reflecting monitoring of retrieved information, left ventrolateral PFC was more activated for New than for True and False items, possibly reflecting semantic processing. Precuneus and lateral parietal regions were more activated for True and False than for New items. Orbitofrontal cortex and cerebellar regions were more activated for False than for True items. In conclusion, the results suggest that activity in anterior MTL regions does not distinguish True from False, whereas activity in posterior MTL regions does.
Resumo:
The dichotomy between two groups of workers on neuroelectrical activity is retarding progress. To study the interrelations between neuronal unit spike activity and compound field potentials of cell populations is both unfashionable and technically challenging. Neither of the mutual disparagements is justified: that spikes are to higher functions as the alphabet is to Shakespeare and that slow field potentials are irrelevant epiphenomena. Spikes are not the basis of the neural code but of multiple codes that coexist with nonspike codes. Field potentials are mainly information-rich signs of underlying processes, but sometimes they are also signals for neighboring cells, that is, they exert influence. This paper concerns opportunities for new research with many channels of wide-band (spike and slow wave) recording. A wealth of structure in time and three-dimensional space is different at each scale—micro-, meso-, and macroactivity. The depth of our ignorance is emphasized to underline the opportunities for uncovering new principles. We cannot currently estimate the relative importance of spikes and synaptic communication vs. extrasynaptic graded signals. In spite of a preponderance of literature on the former, we must consider the latter as probably important. We are in a primitive stage of looking at the time series of wide-band voltages in the compound, local field, potentials and of choosing descriptors that discriminate appropriately among brain loci, states (functions), stages (ontogeny, senescence), and taxa (evolution). This is not surprising, since the brains in higher species are surely the most complex systems known. They must be the greatest reservoir of new discoveries in nature. The complexity should not deter us, but a dose of humility can stimulate the flow of imaginative juices.
Resumo:
We studied aquaporins in maize (Zea mays), an important crop in which numerous studies on plant water relations have been carried out. A maize cDNA, ZmTIP1, was isolated by reverse transcription-coupled PCR using conserved motifs from plant aquaporins. The derived amino acid sequence of ZmTIP1 shows 76% sequence identity with the tonoplast aquaporin γ-TIP (tonoplast intrinsic protein) from Arabidopsis. Expression of ZmTIP1 in Xenopus laevis oocytes showed that it increased the osmotic water permeability of oocytes 5-fold; this water transport was inhibited by mercuric chloride. A cross-reacting antiserum made against bean α-TIP was used for immunocytochemical localization of ZmTIP1. These results indicate that this and/or other aquaporins is abundantly present in the small vacuoles of meristematic cells. Northern analysis demonstrated that ZmTIP1 is expressed in all plant organs. In situ hybridization showed a high ZmTIP1 expression in meristems and zones of cell enlargement: tips of primary and lateral roots, leaf primordia, and male and female inflorescence meristems. The high ZmTIP1 expression in meristems and expanding cells suggests that ZmTIP1 is needed (a) for vacuole biogenesis and (b) to support the rapid influx of water into vacuoles during cell expansion.
Resumo:
We have used a transgene mutation approach to study how expression domains of Hoxc8 are established during mouse embryogenesis. A cis-regulatory region located 3 kb upstream from the Hoxc8 translational start site directs the early phase of expression. Four elements, termed A, B, C, and D, were previously shown to direct expression to the neural tube. Here we report that a fifth element, E, located immediately downstream of D directs expression to mesoderm in combination with the other four elements. These elements are interdependent and partially redundant. Different combinations of elements determine expression in different posterior regions of the embryo. Neural tube expression is determined minimally by ABC, ABD, or ACD; somite expression by ACDE; and lateral plate mesoderm expression by DE. Neural tube and lateral plate mesoderm enhancers can be separated, but independent somite expression has not been achieved. Furthermore, mutations within these elements result in posteriorization of the reporter gene expression. Thus, the anterior extent of expression is determined by the combined action of these elements. We propose that the early phase of Hoxc8 expression is directed by two separate mechanisms: one that determines tissue specificity and another that determines anterior extent of expression.
Resumo:
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite+/-illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite+/-mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite+/-illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite+/-chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ~250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite+/-chlorite alteration formed at ~300°C; (2) chlorite+/-illite alteration at 235°C; (3) chlorite+/-illite and mixed layer clay alteration; and (4) chlorite+/-illite alteration at 220°C. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples. Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.
Resumo:
A complex of mineralogical techniques used in studies of near-surface layer hemipelagic sediments indicates that disordered todorokite and hexagonal birnessite dominate in manganese micronodules, whereas hexagonal birnessite is the main phase of micronodules from miopelagic sediments. Content of todorokite increases downward through the miopelagic sedimentary sequence; this can be reasonably explained by transformations of some other manganese minerals to todorokite. Occurrence of several manganese minerals in studied samples may reflect temporal and lateral variations in C_org content in sediments and respective local fluctuations in environmental conditions (pH, Eh, geochemical activity of Mn, etc.). Todorokite may have formed under the most anoxic conditions near the water-sediment interface.
Resumo:
Stable oxygen and carbon isotope and sedimentological-paleontological investigations supported by accelerator mass spectrometry 14C datings were carried out on cores from north of 85°N in the eastern central Arctic Ocean. Significant changes in accumulation rates, provenance of ice-rafted debris (IRD), and planktic productivity over the past 80,000 years are documented. During peak glacials, i.e., oxygen isotope stages 4 and 2, the Arctic Ocean was covered by sea ice with decreased seasonal variation, limiting planktic productivity and bulk sedimentation rates. In early stage 3 and during Termination I, major deglaciations of the circum-Arctic regions caused lowered salinities and poor oxygenation of central Arctic surface waters. A meltwater spike and an associated IRD peak dated to ~14-12 14C ka can be traced over the southern Eurasian Basin of the Arctic Ocean. This event was associated with the early and rapid deglaciation of the marine-based Barents Sea Ice Sheet. A separate Termination Ib meltwater event is most conspicuous in the central Arctic and is associated with characteristic dolomitic carbonate IRD. This lithology suggests an origin of glacial ice from northern Canada and northern Greenland where lower Paleozoic platform carbonates crop extensively out.
Resumo:
Sciatic nerve blockade (SNB) can be performed at several point along its anatomic course. Proximal SNB techniques described include the classic Labat, sacral (Mansur), infragluteal (Raj), and anterior approches Distal SNB techniques include the mid-femoral, posterior and lateral popliteal and mid-tibial approaches. The anatomic region of the lower extramity to be anesthetixzed will determine the appropriate SNB technique to use for the operative procedure.
Resumo:
Gait repertoires of the northern brown bandicoot, Isoodon macrourus, were studied over a wide range of locomotor speeds. At low relative speeds, bandicoots used symmetrical gaits that included pacing, trotting, and lateral sequence strides. Forefoot contact duration was generally shorter than hind foot contact duration at all speeds. At moderate relative speeds bandicoots used half-bounding gaits with either no period of suspension or with a short gathered suspension. At high speeds the predominant gait had both a short extended and a short gathered suspension, although some strides comprised only an extended suspension. Increases in speed were accompanied by increases in spinal extension, presumably leading to the extended suspensions. On a stationary treadmill individuals occasionally used a bipedal gait. Maximum half-bounding speeds appear to be relatively low in this species.
Resumo:
Objective: To establish the relationship between poor lower limb somatosensory and circulatory status with standing balance, falls history, age and mobility level in dysvascular transtibial amputees (TTAs). Design: Within-subjects evaluation of somatosensation, circulation and stance balance measures in dysvascular transtibial amputees. Setting: Physiotherapy department of a tertiary metropolitan hospital in Australia. Participants: Twenty-two community-dwelling unilateral dysvascular transtibial amputee volunteers, aged between 54 and 86 recruited from a metropolitan hospital outpatient amputee clinic. Main outcome measures: Lower limb vibration sense, light touch sensation and circulatory status were related to centre of pressure excursion during quiet stance, dynamic balance measures of forward and lateral reach distance, and demographic information such as falls history and mobility level. Results: Overall, poor somatosensory status was associated with poor stance balance. There was an association between poor vibration and circulation and increased centre of pressure excursion in quiet stance and reduced reach distance, whereas poor light touch was linked with even weight-bearing in quiet stance. Poor vibration sense was associated with a history of frequent falls. Conclusions: Compromised lower limb somatosensation and circulation was linked with poor balance and a history of frequent falls in the elderly dysvascular amputee population.
Resumo:
Study Design. Cross-sectional study. Objective. To develop a technique to measure electromyographic (EMG) activity of deep and superficial paraspinal muscles at different thoracic levels and to investigate activity of these muscles during seated trunk rotation. Summary of Background Data. Few studies have compared activity of deep and superficial paraspinal muscles of the thorax during trunk rotation, and conflicting results have been presented. Conflicting data may result from recording techniques or variation in activity between thoracic regions. Methods. EMG recordings were made from deep (multifidus/ rotatores) and superficial ( longissimus) paraspinal muscles at T5, T8, and T11 using selective intramuscular electrodes. Ten subjects rotated the trunk to end of range in each direction. EMG amplitude was measured in neutral, at end of range, and during four epochs, which represented four quarters of the movement. Results. During trunk rotation in sitting, longissimus EMG either increased with ipsilateral rotation ( T5) or decreased with contralateral rotation ( T5, T8, T11). In contrast, multifidus EMG was more variable and was either active with rotation in both directions ( particularly T5) or with one movement direction. Conclusions. The deep and superficial muscles of the thorax are differentially active, and the patterns of activity differ between the regions of the thorax. Data from this study support the hypothesis that multifidus may have a role in control of segmental motion at T5. Variability in multifidus activity at T8 and T11 suggests that this muscle may also control coupling between rotation and lateral flexion.