921 resultados para Spectrally bounded
Resumo:
Social infrastructure and sustainable development represent two distinct but interlinked concepts bounded by a geographic location. For those involved in the planning of a residential development, the notion of social infrastructure is crucial to the building of a healthy community and sustainable environment. This is because social infrastructure is provided in response to the basic needs of communities and to enhance the quality of life, equity, stability and social well being. It also acts as the building block to the enhancement of human and social capital. While acknowledging the different levels of social infrastructure provision from neighbourhood, local, district and sub-regional levels, past evidence has shown that the provision at neighbourhood and local level and are affecting well-being of residents and the community sustainability. With intense physical development taking place in Australia's South East Queensland (SEQ) region, local councils are under immense pressure to provide adequate social and community facilities for their residents. This paper shows how participation-oriented, need-sensitive Integrated Social Infrastructure Planning Guideline is used to offer a solution for the efficient planning and provision of multi-level social infrastructure for the SEQ region. The paper points out to the successful implementation of the guideline for social infrastructure planning in multiple levels of spatial jurisdictions of Australia's fastest growing region.
Resumo:
Realisation of the importance of real estate asset strategic decision making has inspired a burgeoning corporate real estate management (CREM) literature. Much of this criticises the poor alignment between strategic business direction and the ‘enabling’ physical environment. This is based on the understanding that corporate real estate assets represent the physical resource base that supports business, and can either complement or impede that business. In the hope of resolving this problem, CRE authors advocate a deeper integration of strategic and corporate real estate decisions. However this recommendation appears to be based on a relatively simplistic theoretical approach to organization where decision-making tends to be viewed as a rationally managed event rather than a complex process. Defining decision making as an isolated event has led to an uncritical acceptance of two basic assumptions: ubiquitous, conflict-free rationality and profit maximisation. These assumptions have encouraged prescriptive solutions that clearly lack the sophistication necessary to come to grips with the complexity of the built and organizational environment. Alternatively, approaching CREM decision making from a more sophisticated perspective, such as that of the “Carnegie School”, leads to conceptualise it as a ‘process’, creating room for bounded rationality, multiple goals, intra-organizational conflict, environmental matching, uncertainty avoidance and problem searching. It is reasonable to expect that such an approach will result in a better understanding of the organizational context, which will facilitate the creation of organizational objectives, assist with the formation of strategies, and ultimately will aid decision.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.
Resumo:
We investigate the use of certain data-dependent estimates of the complexity of a function class, called Rademacher and Gaussian complexities. In a decision theoretic setting, we prove general risk bounds in terms of these complexities. We consider function classes that can be expressed as combinations of functions from basis classes and show how the Rademacher and Gaussian complexities of such a function class can be bounded in terms of the complexity of the basis classes. We give examples of the application of these techniques in finding data-dependent risk bounds for decision trees, neural networks and support vector machines.
Resumo:
In the context of learning paradigms of identification in the limit, we address the question: why is uncertainty sometimes desirable? We use mind change bounds on the output hypotheses as a measure of uncertainty and interpret ‘desirable’ as reduction in data memorization, also defined in terms of mind change bounds. The resulting model is closely related to iterative learning with bounded mind change complexity, but the dual use of mind change bounds — for hypotheses and for data — is a key distinctive feature of our approach. We show that situations exist where the more mind changes the learner is willing to accept, the less the amount of data it needs to remember in order to converge to the correct hypothesis. We also investigate relationships between our model and learning from good examples, set-driven, monotonic and strong-monotonic learners, as well as class-comprising versus class-preserving learnability.
Resumo:
We present a modification of the algorithm of Dani et al. [8] for the online linear optimization problem in the bandit setting, which with high probability has regret at most O ∗ ( √ T) against an adaptive adversary. This improves on the previous algorithm [8] whose regret is bounded in expectation against an oblivious adversary. We obtain the same dependence on the dimension (n 3/2) as that exhibited by Dani et al. The results of this paper rest firmly on those of [8] and the remarkable technique of Auer et al. [2] for obtaining high probability bounds via optimistic estimates. This paper answers an open question: it eliminates the gap between the high-probability bounds obtained in the full-information vs bandit settings.
Resumo:
We provide an algorithm that achieves the optimal regret rate in an unknown weakly communicating Markov Decision Process (MDP). The algorithm proceeds in episodes where, in each episode, it picks a policy using regularization based on the span of the optimal bias vector. For an MDP with S states and A actions whose optimal bias vector has span bounded by H, we show a regret bound of ~ O(HS p AT ). We also relate the span to various diameter-like quantities associated with the MDP, demonstrating how our results improve on previous regret bounds.
Resumo:
Resolving a noted open problem, we show that the Undirected Feedback Vertex Set problem, parameterized by the size of the solution set of vertices, is in the parameterized complexity class Poly(k), that is, polynomial-time pre-processing is sufficient to reduce an initial problem instance (G, k) to a decision-equivalent simplified instance (G', k') where k' � k, and the number of vertices of G' is bounded by a polynomial function of k. Our main result shows an O(k11) kernelization bound.
Resumo:
Strategic communication is held to be a key process by which organisations respond to environmental uncertainty. In the received view articulated in the literatures of organisational communication and public relations, strategic communication results from collaborative efforts by organisational members to create shared understanding about environmental uncertainty and, as a result of this collective understanding, formulate appropriate communication responses. In this study, I explore how such collaborative efforts towards the development of strategic communication are derived from, and bounded by, culturally shared values and assumptions. Study of the influences of an organisation‟s culture on the formulation of strategic communication is a fundamental conceptual challenge for public relations and, to date, a largely unaddressed area of research. This thesis responds to this challenge by describing a key property of organisational culture – the action of cultural selection (Durham, 1992). I integrate this property of cultural selection to extend and refine the descriptive range of Weick‟s (1969, 1979) classic sociocultural model of organizing. From this integration I propose a new model, the Cultural Selection of Strategic Communication (CSSC). Underpinning the CSSC model is the central proposition that because of the action of cultural selection during organizing processes, the inherently conservative properties of an organisation‟s culture constrain development of effective strategic communication in ways that may be unrelated to the outcomes of “environmental scanning” and other monitoring functions heralded by the public relations literature as central to organisational adaptation. Thus, by examining the development of strategic communication, I describe a central conservative influence on the social ecology of organisations. This research also responds to Butschi and Steyn‟s (2006) call for the development of theory focusing on strategic communication as well as Grunig (2006) and Sriramesh‟s (2007) call for research to further understand the role of culture in public relations practice. In keeping with the explorative and descriptive goals of this study, I employ organisational ethnography to examine the influence of cultural selection on the development of strategic communication. In this methodological approach, I use the technique of progressive contextualisation to compare data from two related but distinct cultural settings. This approach provides a range of descriptive opportunities to permit a deeper understanding of the work of cultural selection. Findings of this study propose that culture, operating as a system of shared and socially transmitted social knowledge, acts through the property of cultural selection to influence decision making, and decrease conceptual variation within a group. The findings support the view that strategic communication, as a cultural product derived from the influence of cultural selection, is an essential feature to understand the social ecology of an organisation.
Resumo:
This work examines the effect of landmark placement on the efficiency and accuracy of risk-bounded searches over probabilistic costmaps for mobile robot path planning. In previous work, risk-bounded searches were shown to offer in excess of 70% efficiency increases over normal heuristic search methods. The technique relies on precomputing distance estimates to landmarks which are then used to produce probability distributions over exact heuristics for use in heuristic searches such as A* and D*. The location and number of these landmarks therefore influence greatly the efficiency of the search and the quality of the risk bounds. Here four new methods of selecting landmarks for risk based search are evaluated. Results are shown which demonstrate that landmark selection needs to take into account the centrality of the landmark, and that diminishing rewards are obtained from using large numbers of landmarks.
Resumo:
Embedded real-time programs rely on external interrupts to respond to events in their physical environment in a timely fashion. Formal program verification theories, such as the refinement calculus, are intended for development of sequential, block-structured code and do not allow for asynchronous control constructs such as interrupt service routines. In this article we extend the refinement calculus to support formal development of interrupt-dependent programs. To do this we: use a timed semantics, to support reasoning about the occurrence of interrupts within bounded time intervals; introduce a restricted form of concurrency, to model composition of interrupt service routines with the main program they may preempt; introduce a semantics for shared variables, to model contention for variables accessed by both interrupt service routines and the main program; and use real-time scheduling theory to discharge timing requirements on interruptible program code.
Resumo:
Traversability maps are a global spatial representation of the relative difficulty in driving through a local region. These maps support simple optimisation of robot paths and have been very popular in path planning techniques. Despite the popularity of these maps, the methods for generating global traversability maps have been limited to using a-priori information. This paper explores the construction of large scale traversability maps for a vehicle performing a repeated activity in a bounded working environment, such as a repeated delivery task.We evaluate the use of vehicle power consumption, longitudinal slip, lateral slip and vehicle orientation to classify the traversability and incorporate this into a map generated from sparse information.
Resumo:
Different archives of television material construct different versions of Australian national identity. There exists a Pro-Am archive of Australian television history materials consisting of many individual collections. This archive is not centrally located nor clearly bounded. The collections are not all linked to each other, nor are they aware of each other, and they do not claim to have a single common project. Pro-Am collections tend not to address Australian television as a whole, rather addressing particular genres, programs or production companies. Their vision of Australia is 'ordinary' and everyday. The boundaries of 'Australia' in the Pro-Am archive are porous, allowing non-Australians to contribute material, and also including non-Australian material and this causes little sense of anxiety.
Resumo:
Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae), the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots - of the breakpoints required to re-create MSV-MatA. Although the MSV-sensitive maize genotype gave rise to the greatest variety of recombinants, the measured fitness of each of these recombinants correlated with their similarity to MSV-MatA. Conclusions The mechanistic predispositions of different MSV genomic regions to recombination can strongly influence the accessibility of high-fitness MSV recombinants. The frequency with which the fittest recombinant MSV genomes arise also correlates directly with the escalating selection pressures imposed by increasingly MSV-resistant maize hosts.
Resumo:
The suitability of Role Based Access Control (RBAC) is being challenged in dynamic environments like healthcare. In an RBAC system, a user's legitimate access may be denied if their need has not been anticipated by the security administrator at the time of policy specification. Alternatively, even when the policy is correctly specified an authorised user may accidentally or intentionally misuse the granted permission. The heart of the challenge is the intrinsic unpredictability of users' operational needs as well as their incentives to misuse permissions. In this paper we propose a novel Budget-aware Role Based Access Control (B-RBAC) model that extends RBAC with the explicit notion of budget and cost, where users are assigned a limited budget through which they pay for the cost of permissions they need. We propose a model where the value of resources are explicitly defined and an RBAC policy is used as a reference point to discriminate the price of access permissions, as opposed to representing hard and fast rules for making access decisions. This approach has several desirable properties. It enables users to acquire unassigned permissions if they deem them necessary. However, users misuse capability is always bounded by their allocated budget and is further adjustable through the discrimination of permission prices. Finally, it provides a uniform mechanism for the detection and prevention of misuses.