942 resultados para Specific protein(s)
Resumo:
ASH1 encodes a protein that is localized specifically to the daughter cell nucleus, where it has been proposed to repress transcription of the HO gene. Using Ash1p purified from baculovirus-infected insect cells, we have shown that Ash1p binds specific DNA sequences in the HO promoter. DNase I protection analyses showed that Ash1p recognizes a consensus sequence, YTGAT. Mutation of this consensus abolishes Ash1p DNA binding in vitro. We have shown that Ash1p requires an intact zinc-binding domain in its C terminus for repression of HO in vivo and that this domain may be involved in DNA binding. A heterologous DNA-binding domain fused to an N-terminal segment of Ash1p functions as an active repressor of transcription. Our studies indicate that Ash1p is a DNA-binding protein of the GATA family with a separable transcriptional repression domain.
Resumo:
There is still a lack of information on the specific characteristics of DNA-binding proteins from hyperthermophiles. Here we report on the product of the gene orf56 from plasmid pRN1 of the acidophilic and thermophilic archaeon Sulfolobus islandicus. orf56 has not been characterised yet but low sequence similarily to several eubacterial plasmid-encoded genes suggests that this 6.5 kDa protein is a sequence-specific DNA-binding protein. The DNA-binding properties of ORF56, expressed in Escherichia coli, have been investigated by EMSA experiments and by fluorescence anisotropy measurements. Recombinant ORF56 binds to double-stranded DNA, specifically to an inverted repeat located within the promoter of orf56. Binding to this site could down-regulate transcription of the orf56 gene and also of the overlapping orf904 gene, encoding the putative initiator protein of plasmid replication. By gel filtration and chemical crosslinking we have shown that ORF56 is a dimeric protein. Stoichiometric fluorescence anisotropy titrations further indicate that ORF56 binds as a tetramer to the inverted repeat of its target binding site. CD spectroscopy points to a significant increase in ordered secondary structure of ORF56 upon binding DNA. ORF56 binds without apparent cooperativity to its target DNA with a dissociation constant in the nanomolar range. Quantitative analysis of binding isotherms performed at various salt concentrations and at different temperatures indicates that approximately seven ions are released upon complex formation and that complex formation is accompanied by a change in heat capacity of –6.2 kJ/mol. Furthermore, recombinant ORF56 proved to be highly thermostable and is able to bind DNA up to 85°C.
Resumo:
Transcription factors belonging to the CCAAT-enhancer binding protein (C/EBP) family have been implicated in the regulation of gene expression during differentiation, development and disease. Autoregulation is relatively common in the modulation of C/EBP gene expression and the murine and human C/EBPα genes have been shown to be auto-activated by different mechanisms. In the light of this finding, it is essential that autoregulation of C/EBPα genes from a wider range of different species be investigated in order to gauge the degree of commonality, or otherwise, that may exist. We report here studies that investigate the regulation of the Xenopus laevis C/EBPα gene (xC/EBPα). The –1131/+41 promoter region was capable of directing high levels of expression in both the human hepatoma Hep3B and the Xenopus kidney epithelial A6 cell lines, and was auto-activated by expression vectors specifying for xC/EBPα or xC/EBPβ. Deletion analysis showed that the –321/+41 sequence was sufficient for both the constitutive promoter activity and auto-activation and electrophoretic mobility shift assays identified the interaction of C/EBPs and Sp1 to this region. Although deletion of either the C/EBP or the Sp1 site drastically reduced the xC/EBPα promoter activity, multimers of only the C/EBP site could confer autoregulation to a heterologous SV40 promoter. These results indicate that, in contrast to the human promoter and in common with the murine gene, the xC/EBPα promoter was subject to direct autoregulation. In addition, we demonstrate a novel species-specific action of Sp1 in the regulation of C/EBPα expression, with the factor able to repress the murine promoter but activate the Xenopus gene.
Resumo:
IL-18 can be considered a proinflammatory cytokine mediating disease as well as an immunostimulatory cytokine that is important for host defense against infection and cancer. The high-affinity, constitutively expressed, and circulating IL-18 binding protein (IL-18BP), which competes with cell surface receptors for IL-18 and neutralizes IL-18 activity, may act as a natural antiinflammatory as well as immunosuppressive molecule. In the present studies, the IL-18 precursor caspase-1 cleavage site was changed to a factor Xa site, and, after expression in Escherichia coli, mature IL-18 was generated by factor Xa cleavage. Mature IL-18 generated by factor Xa cleavage was fully active. Single point mutations in the mature IL-18 peptide were made, and the biological activities of the wild-type (WT) IL-18 were compared with those of the mutants. Mutants E42A and K89A exhibited 2-fold increased activity compared with WT IL-18. A double mutant, E42A plus K89A, exhibited 4-fold greater activity. Unexpectedly, IL-18BP failed to neutralize the double mutant E42A plus K89A compared with WT IL-18. The K89A mutant was intermediate in being neutralized by IL-18BP, whereas neutralization of the E42A mutant was comparable to that in the WT IL-18. The identification of E42 and K89 in the mature IL-18 peptide is consistent with previous modeling studies of IL-18 binding to IL-18BP and explains the unusually high affinity of IL-18BP for IL-18.
Resumo:
We isolated and characterized a novel light-regulated cDNA from the short-day plant Pharbitis nil that encodes a protein with a leucine (Leu) zipper motif, designated PNZIP (Pharbitis nil Leu zipper). The PNZIP cDNA is not similar to any other gene with a known function in the database, but it shares high sequence homology with an Arabidopsis expressed sequence tag and to two other sequences of unknown function from the cyanobacterium Synechocystis spp. and the red alga Porphyra purpurea, which together define a new family of evolutionarily conserved Leu zipper proteins. PNZIP is a single-copy gene that is expressed specifically in leaf photosynthetically active mesophyll cells but not in other nonphotosynthetic tissues such as the epidermis, trichomes, and vascular tissues. When plants were exposed to continuous darkness, PNZIP exhibited a rhythmic pattern of mRNA accumulation with a circadian periodicity of approximately 24 h, suggesting that its expression is under the control of an endogenous clock. However, the expression of PNZIP was unusual in that darkness rather than light promoted its mRNA accumulation. Accumulation of PNZIP mRNA during the dark is also regulated by phytochrome, since a brief exposure to red light in the middle of the night reduced its mRNA levels. Moreover, a far-red-light treatment at the end of day also reduced PNZIP mRNA accumulation during the dark, and that effect could be inhibited by a subsequent exposure to red light, showing the photoreversible response attributable to control through the phytochrome system.
Resumo:
In testis mRNA stability and translation initiation are extensively under the control of poly(A)-binding proteins (PABP). Here we have cloned a new human testis-specific PABP (PABP3) of 631 amino acids (70.1 kDa) with 92.5% identical residues to the ubiquitous PABP1. A northern blot of multiple human tissues hybridised with PABP3- and PABP1-specific oligonucleotide probes revealed two PABP3 mRNAs (2.1 and 2.5 kb) detected only in testis, whereas PABP1 mRNA (3.2 kb) was present in all tested tissues. In human adult testis, PABP3 mRNA expression was restricted to round spermatids, whereas PABP1 was expressed in these cells as well as in pachytene spermatocytes. PABP3-specific antibodies identified a protein of 70 kDa in human testis extracts. This protein binds poly(A) with a slightly lower affinity as compared to PABP1. The human PABP3 gene is intronless with a transcription start site 61 nt upstream from the initiation codon. A sequence of 256 bp upstream from the transcription start site drives the promoter activity of PABP3 and its tissue-specific expression. The expression of PABP3 might be a way to bypass PABP1 translational repression and to produce the amount of PABP needed for active mRNA translation in spermatids.
Resumo:
We investigated the production of hyaluronan (HA) and its effect on cell motility in cells expressing the v-src mutants. Transformation of 3Y1 by v-src virtually activated HA secretion, whereas G2A v-src, a nonmyristoylated form of v-src defective in cell transformation, had no effect. In cells expressing the temperature-sensitive mutant of v-Src, HA secretion was temperature dependent. In addition, HA as small as 1 nM, on the other side, activated cell motility in a tumor-specific manner. HA treatment strongly activated the motility of v-Src–transformed 3Y1, whereas it showed no effect on 3Y1- and 3Y1-expressing G2A v-src. HA-dependent cell locomotion was strongly blocked by either expression of dominant-negative Ras or treatment with a Ras farnesyltransferase inhibitor. Similarly, both the MEK1 inhibitor and the kinase inhibitor clearly inhibited HA-dependent cell locomotion. In contrast, cells transformed with an active MEK1 did not respond to the HA. Finally, an anti-CD44–neutralizing antibody could block the activation of cell motility by HA as well as the HA-dependent phosphorylation of mitogen-activated protein kinase and Akt. Taken together, these results suggest that simultaneous activation of the Ras-mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase pathway by the HA-CD44 interaction is required for the activation of HA-dependent cell locomotion in v-Src–transformed cells.
Resumo:
Human Dmc1 protein, a meiosis-specific homolog of Escherichia coli RecA protein, has previously been shown to promote DNA homologous pairing and strand-exchange reactions that are qualitatively similar to those of RecA protein and Rad51. Human and yeast Rad51 proteins each form a nucleoprotein filament that is very similar to the filament formed by RecA protein. However, recent studies failed to find a similar filament made by Dmc1 but showed instead that this protein forms octameric rings and stacks of rings. These observations stimulated further efforts to elucidate the mechanism by which Dmc1 promotes the recognition of homology. Dmc1, purified to a state in which nuclease and helicase activities were undetectable, promoted homologous pairing and strand exchange as measured by fluorescence resonance energy transfer (FRET). Observations on the intermediates and products, which can be distinguished by FRET assays, provided direct evidence of a three-stranded synaptic intermediate. The effects of helix stability and mismatched base pairs on the recognition of homology revealed further that human Dmc1, like human Rad51, requires the preferential breathing of A⋅T base pairs for recognition of homology. We conclude that Dmc1, like human Rad51 and E. coli RecA protein, promotes homologous pairing and strand exchange by a “synaptic pathway” involving a three-stranded nucleoprotein intermediate, rather than by a “helicase pathway” involving the separation and reannealing of DNA strands.
Resumo:
Messenger RNA transcripts of the highly pigmented murine melanoma B16-F1 cells were compared with those from their weakly pigmented derivative B16-F10 cells by differential display. A novel gene called msg1 (melanocyte-specific gene) was found to be expressed at high levels in B16-F1 cells but at low levels in B16-F10 cells. Expression of msg1 was undetectable in the amelanotic K1735 murine melanoma cells. The pigmented murine melanocyte cell line melan-a expressed msg1, as did pigmented primary cultures of murine and human melanocytes; however, seven amelanotic or very weakly pigmented human melanoma cell lines were negative. Transformation of murine melanocytes by transfection with v-Ha-ras or Ela was accompanied by depigmentation and led to complete loss of msg1 expression. The normal tissue distribution of msg1 mRNA transcripts in adult mice was confined to melanocytes and testis. Murine msg1 and human MSG1 genes encode a predicted protein of 27 kDa with 75% overall amino acid identity and 96% identity within the C-terminal acidic domain of 54 amino acids. This C-terminal domain was conserved with 76% amino acid identity in another protein product of a novel human gene, MRG1 (msg1-related gene), isolated from normal human melanocyte cDNA by 5'-rapid amplification of cDNA ends based on the homology to msg1. The msg1 protein was localized to the melanocyte nucleus by immunofluorescence cytochemistry. We conclude that msg1 encodes a nuclear protein, is melanocyte-specific, and appears to be lost in depigmented melanoma cells.
Resumo:
A recombinant rabies virus (RV) mutant deficient for the surface spike glycoprotein (G) gene was used to study the incorporation of envelope proteins from HIV-1 expressed from transfected plasmids. A hybrid HIV-1 protein in which the cytoplasmic domain was replaced with that of RV G was incorporated into the virus envelope and rescued the infectivity of the RV mutant. The RV(HIV-1) pseudotype viruses could infect only CD4+ cells, and their infectivity was neutralized specifically by anti-HIV-1 sera. In contrast to the chimeric protein, wild-type HIV-1 envelope protein or mutants with truncated cytoplasmic domains failed to produce pseudotyped particles. This indicates the presence of a specific signal in the RV G cytoplasmic domain, allowing correct incorporation of a spike protein into the envelope of rhabdovirus particles. The possibility of directing the cell tropism of RV by replacement of the RV G with proteins of defined receptor specificity should prove useful for future development of targetable gene delivery vectors.
Resumo:
AML1 is involved in the (8;21) translocation, associated with acute myelogenous leukemia (AML)-type M2, which results in the production of the AML1-ETO fusion protein: the amino-terminal 177 amino acids of AML1 and the carboxyl-terminal 575 amino acids of ETO. The mechanism by which AML1-ETO accomplishes leukemic transformation is unknown; however, AML1-ETO interferes with AML1 transactivation of such AML1 targets as the T-cell receptor beta enhancer and the granulocyte-macrophage colony-stimulating factor promoter. Herein, we explored the effect of AML1-ETO on regulation of a myeloid-specific AML1 target, the macrophage colony-stimulating factor (M-CSF) receptor promoter. We found that AML1-ETO and AML1 work synergistically to transactivate the M-CSF receptor promoter, thus exhibiting a different activity than previously described. Truncation mutants within the ETO portion of AML1-ETO revealed the region of ETO necessary for the cooperativity between AML1 and AML1-ETO lies between amino acids 347 and 540. Endogenous M-CSF receptor expression was examined in Kasumi-1 cells, derived from a patient with AML-M2 t(8;21) and the promonocytic cell line U937. Kasumi-1 cells exhibited a significantly higher level of M-CSF receptor expression than U937 cells. Bone marrow from patients with AML-M2 t(8;21) also exhibited a higher level of expression of M-CSF receptor compared with normal controls. The upregulation of M-CSF receptor expression by AML1-ETO may contribute to the development of a leukemic state in these patients.
Resumo:
Transgenic mice were generated with cardiac-specific overexpression of the G protein-coupled receptor kinase-5 (GRK5), a serine/threonine kinase most abundantly expressed in the heart compared with other tissues. Animals overexpressing GRK5 showed marked beta-adrenergic receptor desensitization in both the anesthetized and conscious state compared with nontransgenic control mice, while the contractile response to angiotensin II receptor stimulation was unchanged. In contrast, the angiotensin II-induced rise in contractility was significantly attenuated in transgenic mice overexpressing the beta-adrenergic receptor kinase-1, another member of the GRK family. These data suggest that myocardial overexpression of GRK5 results in selective uncoupling of G protein-coupled receptors and demonstrate that receptor specificity of the GRKs may be important in determining the physiological phenotype.
Resumo:
Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, is a human herpesvirus associated with epithelial cell malignancies (nasopharyngeal carcinoma) as well as B-cell malignancies. Understanding how viral latency is disrupted is a central issue in herpesvirus biology. Epithelial cells are the major site of lytic EBV replication within the human host, and viral reactivation occurs in EBV-associated nasopharyngeal carcinomas. It is known that expression of a single viral immediate-early protein, BZLF1, is sufficient to initiate the switch from latent to lytic infection in B cells. Cellular regulation of BZLF1 transcription is therefore thought to play a key role in regulating the stringency of viral latency. Here we show that, unexpectedly, expression of another viral immediate-early protein, BRLF1, can disrupt viral latency in an epithelial cell-specific fashion. Therefore, the mechanisms leading to disruption of EBV latency appear to be cell-type specific.
Resumo:
Approximately 40% of diffuse large cell lymphoma are associated with chromosomal translocations that deregulate the expression of the BCL6 gene by juxtaposing heterologous promoters to the BCL-6 coding domain. The BCL6 gene encodes a 95-kDa protein containing six C-terminal zinc-finger motifs and an N-terminal POZ domain, suggesting that it may function as a transcription factor. By using a DNA sequence selected for its ability to bind recombinant BCL-6 in vitro, we show here that BCL-6 is present in DNA-binding complexes in nuclear extracts from various B-cell lines. In transient transfectin experiments, BCL6 can repress transcription from promoters linked to its DNA target sequence and this activity is dependent upon specific DNA-binding and the presence of an intact N-terminal half of the protein. We demonstrate that this part of the BCL6 molecule contains an autonomous transrepressor domain and that two noncontiguous regions, including the POZ motif, mediate maximum transrepressive activity. These results indicate that the BCL-6 protein can function as a sequence-specific transcriptional repressor and have implications for the role of BCL6 in normal lymphoid development and lymphomagenesis.
Resumo:
Many genes involved in cell division and DNA replication and their protein products have been identified in bacteria; however, little is known about the cell cycle regulation of the intracellular concentration of these proteins. It has been shown that the level of the tubulin-like GTPase FtsZ is critical for the initiation of cell division in bacteria. We show that the concentration of FtsZ varies dramatically during the cell cycle of Caulobacter crescentus. Caulobacter produce two different cell types at each cell division: (i) a sessile stalked cell that can initiate DNA replication immediately after cell division and (ii) a motile swarmer cell in which DNA replication is blocked. After cell division, only the stalked cell contains FtsZ. FtsZ is synthesized slightly before the swarmer cells differentiate into stalked cells and the intracellular concentration of FtsZ is maximal at the beginning of cell division. Late in the cell cycle, after the completion of chromosome replication, the level of FtsZ decreases dramatically. This decrease is probably mostly due to the degradation of FtsZ in the swarmer compartment of the predivisional cell. Thus, the variation of FtsZ concentration parallels the pattern of DNA synthesis. Constitutive expression of FtsZ leads to defects in stalk biosynthesis suggesting a role for FtsZ in this developmental process in addition to its role in cell division.