992 resultados para Spain. Ejército
Resumo:
The soluble metal sulphate salts melanterite, rozenite, rhomboclase, szornolnokite, copiapite, coquimbite, hexahydrite and halotrichite, together with gypsum, have been identified, some for the first time oil the banks of the Rio Tinto, SW Spain. Secondary Fe-sulphate minerals call form directly from evaporating acid, sulphate-rich Solutions as a result of pyrite oxidation. Chemical analyses of mixtures of these salt minerals indicate concentrations of Fe (up to 31 wt.%), Mg (up to 4 wt.%), Cu (up to 2 wt.%) and Zn (up to wt.%). These minerals are shown to act as transient storage Cor metals and can store on average up to 10% (9.5 - 11%) and 22% (20-23%) Zn and Cu respectively, of the total discharge of the Rio Tinto during the summer period. Melanterite and rozenite precipitates at Rio Tinto are only found in association with very acidic drainage waters (pH <1.0) draining directly from pyritic waste piles. Copiapite precipitates abundantly oil the banks of the Rio Tinto by (1) direct evaporation of the river water; or (2) as part of a paragenetic sequence with the inclusion of minor halotrichite, indicating natural dehydration and decomposition. The natural occurrences are comparable with the process of paragenesis from the evaporation of Rio Tinto river water under laboratory experiments resulting in the formation of aluminocopiapite, halotrichite, coquimbite, voltaite and gypsum.
Resumo:
Quaternary-aged calcrete horizons are common weathering products in arid and semi-arid regions. It is, however, unclear how calcrete forming processes respond to the major oscillations in climate that occur over the Quaternary period. This paper presents a U-series-based calcrete age database from the Sorbas basin, southeast Spain. The study constructs an age frequency distribution of these ages which is consequently compared to a range of palaeoenvironmental records from the Mediterranean. The age distribution presented here suggests that the formation of pedogenic calcrete horizons in the Sorbas basin primarily occurs during 'warm' isotope stages (MIS 1 and 5), with very few calcrete ages occurring during cold glacial/stadial stages (MIS 2, 3 and 4). It is suggested that this is a function of the environments that existed during 'warm' isotope stages being more conducive to calcrete development than those that existed during cold climate episodes. In a semi-arid region such as the Sorbas basin it is likely that increased aridity during glacial stages, coupled with reduced vegetation and accelerated landscape instability, was crucial in reducing rates of calcrete formation. In a semi-arid region such as southeast Spain, calcrete formation during the Quaternary, therefore, oscillates with climate change but is primarily a "warm" episode phenomenon. It is suggested that further studies are required to see how calcrete genesis responds to environmental change in more humid parts of the Mediterranean. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Immature and mature calcretes from an alluvial terrace sequence in the Sorbas basin, southeast Spain, were dated by the U-series isochron technique. The immature horizons consistently produced statistically reliable ages of high precision. The mature horizons typically produced statistically unreliable ages but, because of linear trends in the dataset and low errors associated with each data point, it was still possible to place a best-fit isochron through the dataset to produce an age with low associated uncertainties. It is, however, only possible to prove that these statistically unreliable ages have geochronological significance if multiple isochron ages are produced for a single site, and if these multiple ages are stratigraphically consistent. The geochronological significance of such ages can be further proven if at least one of the multiple ages is statistically reliable. By using this technique to date calcretes that have formed during terrace aggradation and at the terrace surface after terrace abandonment it is possible not only to date the timing of terrace aggradation but also to constrain the age at which the river switched from aggradation to incision. This approach, therefore, constrains the timing of changes in fluvial processes more reliably than any currently used geochronological procedure and is appropriate for dating terrace sequences in dryland regions worldwide, wherever calcrete horizons are present. (c) 2005 University of Washington. All rights reserved.
Resumo:
A detailed study of the morphology and micro-morphology of Quaternary alluvial calcrete profiles from the Sorbas Basin shows that calcretes may be morphologically simple or complex. The 'simple' profiles reflect pedogenesis occurring after alluvial terrace formation and consist of a single pedogenic horizon near the land surface. The 'complex' profiles reflect the occurrence of multiple calcrete events during terrace sediment aggradation and further periods of pedogenesis after terrace formation. These 'complex' calcrete profiles are consequently described as composite profiles. The exact morphology of the composite profiles depends upon: (1) the number of calcrete-forming events occurring during terrace sediment aggradation; (2) the amount of sediment accretion that occurs between each period of calcrete formation; and (3) the degree of pedogenesis after terrace formation. Simple calcrete profiles are most useful in establishing landform chronologies because they represent a single phase of pedogenesis after terrace formation. Composite profiles are more problematic. Pedogenic calcretes that form within them may inherit carbonate from calcrete horizons occurring lower down in the terrace sediments. In addition erosion may lead to the exhumation of older calcretes within the terrace sediment. Calcrete 'inheritance' may make pedogenic horizons appear more mature than they actually are and produce horizons containing carbonate embracing a range of ages. Calcrete exhumation exposes calcrete horizons whose morphology and radiometric ages are wholly unrelated to terrace surface age. Composite profiles are, therefore, only suitable for chronological studies if the pedogenic horizon capping the terrace sequence can be clearly distinguished from earlier calcrete-forming events. Thus, a detailed morphological/micro-morphological study is required before any chronological study is undertaken. This is the only way to establish whether particular calcrete profiles are suitable for dating purposes. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
The aim of this work is to study the hydrochemical variations during flood events in the Rio Tinto, SW Spain. Three separate rainfall/flood events were monitored in October 2004 following the dry season. In general, concentrations markedly increased following the first event (Fe from 99 to 1130 mg/L; Q(max) = 0.78 m(3)/s) while dissolved loads peaked in the second event (Fe = 7.5 kg/s, Cu = 0.83 kg/s, Zn = 0.82 kg/s; Q(max) = 77 m(3)/s) and discharge in the third event (Q(max) = 127 m(3)/s). This pattern reflects a progressive depletion of metals and sulphate stored in the dry summer as soluble evaporitic salt minerals and concentrated pore fluids, with dilution by freshwater becoming increasingly dominant as the month progressed. Variations in relative concentrations were attributed to oxyhydroxysulphate Fe precipitation, to relative changes in the sources of acid mine drainage (e.g. salt minerals, mine tunnels, spoil heaps etc.) and to differences in the rainfall distributions along the catchment. The contaminant load carried by the river during October 2004 was enormous, totalling some 770 t of Fe, 420 t of Al, 100 t of Cu, 100 t of Zn and 71 t of Mn. This represents the largest recorded example of this flush-out process in an acid mine drainage setting. Approximately 1000 times more water and 1408 200 times more dissolved elements were carried by the river during October 2004 than during the dry, low-flow conditions of September 2004, highlighting the key role of flood Events in the annual pollutant transport budget of semi-arid and and systems and the need to monitor these events in detail in order to accurately quantify pollutant transport. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents regional sequences of production, consumption and Social relations ill Southern Spain from the beginning of the Neolithic to the Early Bronze Age (c. 5600-1550 BC). The regions Studied are southeast Spain, Valencia, the southern Meseta and central/western Andalucia. The details presented for each region and period vary in quality but Show how Much our knowledge of the archaeological record of southern Spain has changed during the last four decades. Among the Surprises are the rapidity of agricultural adoption. the emergence of regional centres of aggregated population in enclosed/fortified settlements of up to 400 hectares in the fourth and third millennia BC. the use of copper objects as instruments of production, rather than as items With 11 purely symbolic of 'prestige' value, large-scale copper production in western Andalucia in the third millennium BC (as opposed to the usual domestic production model), and the inference of societies based oil relations of class.
Resumo:
Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling their distribution and transfer within the soil and vegetation systems are not always well defined. Total concentrations of up to 15,195 mg center dot kg (-1) As, 6,690 mg center dot kg(-1) Cu, 24,820 mg center dot kg(-1) Pb and 9,810 mg center dot kg(-1) Zn in soils, and 62 mg center dot kg(-1) As, 1,765 mg center dot kg(-1) Cu, 280 mg center dot kg(-1) Pb and 3,460 mg center dot kg (-1) Zn in vegetation were measured. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters (maximum 2-3 km). Parent material, prevailing wind direction, and soil physical and chemical characteristics were found to correlate poorly with the restricted trace element distributions in soils. Hypotheses are given for this unusual distribution: (1) the contaminated soils were removed by erosion or (2) mines and smelters released large heavy particles that could not have been transported long distances. Analyses of the accumulation of trace elements in vegetation (median ratios: As 0.06, Cu 0.19, Pb 0.54 and Zn 1.07) and the percentage of total trace elements being DTPA extractable in soils (median percentages: As 0.06%, Cu 15%, Pb 7% and Zn 4%) indicated higher relative trace element mobility in soils with low total concentrations than in soils with elevated concentrations.