958 resultados para Sorption Isotherm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This study aimed to analyze in vitro inhibitory effects of restorative materials containing the antibacterial monomer 12-methacryloyloxydodecylpyridinium bromide (MDPB) on the formation of artificial secondary root caries lesions. Methods: Class V cavities (2 mm x 2 mm) were prepared in 75 human root fragments. Specimens were randomly divided into five groups (n = 15 fragments per group) and restored as follows: (I) MDPB-free adhesive system + MDPB-free composite (negative control); (II) resin modified glass ionomer (RM-GIC; positive control); (III) MDPB-free adhesive system + MDPB-containing composite (2.83% MDPB); (IV) MDPB-containing adhesive system + MDPB-free composite; M MDPB-containing adhesive system + MDPB-containing composite. Artificial secondary root caries lesions were produced by a biological artificial caries challenge. The restored specimens were immersed into a culture medium containing Streptococcus mutans and sucrose for 15 days. Histological slices (80 +/- 20 mu m) of the specimens were used for measuring the mean depths of the artificial lesions produced in both margins of the restorations using polarized light microscopy. Results were expressed in percentage related to the mean depth of the negative control, considered 100%. Data were compared by ANOVA followed by the Tukey`s test (p <= 0.05). Results: The depths of lesions adjacent to cavities filled with RM-GIC (GII; 85.17 +/- 15.2%) were significantly (p < 0.01) shallower than those adjacent to restorations with MDPB-free composite (GI; 100.00 +/- 10.04%), despite the presence of MDPB in the adhesive system (GIV; 101.95 +/- 21.32%). The depths of lesions adjacent to cavities restored with MDPB-containing composite (GIII; 82.68 +/- 12.81% and GV; 85.65 +/- 15.42%), despite the adhesive system used, were similar to those of RM-GIC (GII). Mean lesions depths in these groups decreased from 13% (GV) to 17% (GIII) in relation to the negative control (GI). Conclusions: MDPB-containing composite inhibits the progression of artificial secondary root caries lesions regardless of adhesive systems. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The aim of this study was to test the effect of adhesive temperature on the bond strength to dentin (mu TBS) and silver nitrate uptake (SNU) of an ethanol/water (Adper Single Bond 2 [SB]) and an acetone-based (Prime&Bond 2.1 [PB]) etch-and-rinse adhesive system. Methods: The bottles of each adhesive were kept in various temperatures (5 degrees C, 20 degrees C, 37 degrees C and 50 degrees C) for 1 h previously to its application in the occlusal demineralized dentin of 40 molars. Bonded sticks (0.8 mm(2)) were tested in tension (0.5 mm/min) immediately (IM) or after 6 months (6 M) of water storage. Two bonded sticks from each hemi-tooth were immersed in silver nitrate and analyzed by SEM. Data were analyzed by two-way repeated measures ANOVA and Tukey`s test (alpha = 0.05). Results: No significant difference in mu TBS was detected for both adhesives at 5 degrees C and 20 degrees C. The highest bond strength for PB was observed in the 37 degrees C group while for SB it was in the 50 degrees C. Significant reductions of bond strengths were observed for PB at 37 degrees C and SB at 50 degrees C after 6 M of water storage. Silver nitrate deposition was seen in all hybrid layers, irrespective of the group. Lower silver nitrate deposition (water trees) in the adhesive layer was seen for PB and SB at higher temperatures. Conclusions: The heating or refrigeration of the adhesives did not improve their resin-dentin bond resistance to water degradation over time. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: This study evaluated the immediate and 6-month resin-dentin mu-bond strength (mu TBS) of one-step self-etch systems (Adper Prompt L-Pop [AD] 3M ESPE; Xeno III [XE] Dentsply De Trey; iBond [iB] Heraeus Kulzer) under different application modes. Materials and methods: Dentin oclusal surfaces were exposed by grinding with 600-grit SiC paper. The adhesives were applied according to the manufacturer`s directions [MD], or with double application of the adhesive layer [DA] or following the manufacturer`s directions plus a hydrophobic resin layer coating [HL]. After applying the adhesive resins, composite crowns were built up incrementally. After 24-h water storage, the specimens were serially sectioned in ""x"" and ""y"" directions to obtain bonded sticks of about 0.8 mm 2 to be tested immediately [IM] or after 6 months of water storage [6M] at a crosshead speed of 0.5 mm/min. The data from each adhesive was analyzed by a two-way repeated measures ANOVA (mode of application vs. storage time) and Tukey`s test (alpha = 0.05). Results: The adhesives performed differently according to the application mode. The DA and HL either improved the immediate performance of the adhesive or did not differ from the MD. The resin-dentin bond strength values observed after 6 months were higher when a hydrophobic resin coat was used than compared to those values observed under the manufacturer`s directions. Conclusions: The double application of one-step self-etch system can be safety performed however the application of an additional hydrophobic resin layer can improve the immediate resin-dentin bonds and reduce the degradation of resin bonds over time. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long-term effectiveness of chlorhexidine as a matrix metalloproteinase (MMP) inhibitor may be compromised when water is incompletely removed during dentin bonding. This study challenged this anti-bond degradation strategy by testing the null hypothesis that wet-bonding with water or ethanol has no effect on the effectiveness of chlorhexidine in preventing hybrid layer degradation over an 18-month period. Acid-etched dentin was bonded under pulpal pressure simulation with Scotchbond MP and Single Bond 2, with water wet-bonding or with a hydrophobic adhesive with ethanol wet-bonding, with or without pre-treatment with chlorhexidine diacetate (CHD). Resin-dentin beams were prepared for bond strength and TEM evaluation after 24 hrs and after aging in artificial saliva for 9 and 18 mos. Bonds made to ethanol-saturated dentin did not change over time with preservation of hybrid layer integrity. Bonds made to CHD pre-treated acid-etched dentin with commercial adhesives with water wet-bonding were preserved after 9 mos but not after 18 mos, with severe hybrid layer degradation. The results led to rejection of the null hypothesis and highlight the concept of biomimetic water replacement from the collagen intrafibrillar compartments as the ultimate goal in extending the longevity of resin-dentin bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To evaluate the efficacy of simplified dehydration protocols, in the absence of tubular occlusion, on bond strength and interfacial nanoleakage of a hydrophobic experimental adhesive blend to acid-etched, ethanol-dehydrated dentine immediately and after 6 months. Methods: Molars were randomly assigned to 6 treatment groups (n = 5). Under pulpal pressure simulation, dentine crowns were acid-etched with 35% H(3)PO(4) and rinsed with water. Adper Scotchbond Multi-Purpose was used for the control group. The remaining groups had their dentine surface dehydrated with ethanol solutions: group 1 = 50%, 70%, 80%, 95% and 3 x 100%, 30 s for each application; group 2 the same ethanol sequence with 15 s for each solution; groups 3, 4 and 5 used 100% ethanol only, applied in seven, three or one 30 s step, respectively. After dehydration, a primer (50% BisGMA + TEGDMA, 50% ethanol) was used, followed by the neat comonomer adhesive application. Resin composite build-ups were then prepared using an incremental technique. Specimens were stored for 24 h, sectioned into beams and stressed to failure after 24 h or after 6 months of artificial ageing. Interfacial silver leakage evaluation was performed for both storage periods (n = 5 per subgroup). Results: Group 1 showed higher bond strengths at 24 h or after 6 months of ageing (45.6 +/- 5.9(a)/43.1 +/- 3.2(a) MPa) and lower silver impregnation. Bond strength results were statistically similar to control group (41.2 +/- 3.3(ab)/38.3 +/- 4.0(ab) MPa), group 2 (40.0 +/- 3.1(ab)/38.6 +/- 3.2(ab) MPa), and group 3 at 24 h (35.5 +/- 4.3(ab) MPa). Groups 4 (34.6 +/- 5.7(bc)/25.9 +/- 4.1(c) MPa) and 5 (24.7 +/- 4.9(c)/18.2 +/- 4.2(c) MPa) resulted in lower bond strengths, extensive interfacial nanoleakage and more prominent reductions (up to 25%) in bond strengths after 6 months of ageing. Conclusions: Simplified dehydration protocols using one or three 100% ethanol applications should be avoided for the ethanol-wet bonding technique in the absence of tubular occlusion, as they showed decreased bond strength, more severe nanoleakage and reduced bond stability over time. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the influence of monomer content on fracture toughness (K(Ic)) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers. Methods. Five formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm x 5 mm x 2.5 mm, a/w = 0.5, n = 20) and 10 mm x 2 mm x 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm x 2 mm x 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 degrees C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (alpha = 5%). Results. The 30B:70T composite presented the highest K(Ic) value (in MPa m(1/2)) at 24 h (1.3 +/- 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 +/- 0.1). After ethanol storage, reductions in K(Ic) ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69-73%), except for 30B:70U (52 +/- 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 +/- 21 and 122 +/- 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 +/- 20 and 94 +/- 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U. Significance. Composites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Methods. Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH3bis-GMA or CF3bis-GMA, with aldehyde (24mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n = 6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n = 6). Data were analyzed by one-way ANOVA and Tukey`s test (alpha = 0.05). Results. Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH3bis-GMA and bis-GMA/CF3bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. Significance. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties. Published by Elsevier Ltd on behalf of Academy of Dental Materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of the Problem: Adhesive systems can spread differently onto a substrate and, consequently, influence bonding. Purpose: The purpose of this study was to evaluate the effect of differently oriented dentin surfaces and the regional variation of specimens on adhesive layer thickness and microtensile bond strength (MTBS). Materials and Methods: Twenty-four molars were sectioned mesiodistally to expose flat buccal and lingual halves. Standardized drop volumes of adhesive systems (Single Bond [SB] and Prime & Bond 2.1 [PB2.1]) were applied to dentin according to the manufacturer`s instructions. Teeth halves were randomly divided into groups: 1A-SB/parallel to gravity; 1B-SB/perpendicular to gravity; 2A-PB2.1/parallel to gravity; and 2B-PB2.1/perpendicular to gravity. The bonded assemblies were stored in 37 degrees C distilled water for 24 hours and then sectioned to obtain dentin sticks (0.8 mm(2)). The adhesive layer thickness was determined in a light microscope (x200), and after 48 hours the specimens were subjected to MTBS test. Data were analyzed by one-way and two-way analysis of variance and Student-Newman-Keuls tests. Results: Mean values (MPa +/- SD) of MTBS were: 39.1 +/- 12.9 (1A); 32.9 +/- 12.4 (1B); 52.9 +/- 15.2 (2A); and 52.3 +/- 16.5 (2B). The adhesive systems` thicknesses (mu m +/- SD) were: 11.2 +/- 2.9 (1A); 18.1 +/- 7.3 (1B); 4.2 +/- 1.8 (2A); and 3.9 +/- 1.3 (2B). No correlation between bond strength and adhesive layer thickness for both SB and PB2.1 (r = -0.224, p = 0.112 and r = 0.099, p = 0.491, respectively) was observed. Conclusions: The differently oriented dentin surfaces and the regional variation of specimens on the adhesive layer thickness are material-dependent. These variables do not influence the adhesive systems` bond strength to dentin. CLINICAL SIGNIFICANCE Adhesive systems have different viscosities and spread differently onto a substrate, influencing the bond strength and also the adhesive layer thickness. Adhesive thickness does not influence dentin bond strength, but it may impair adequate solvent evaporation, polymer conversion, and may also determine water sorption and adhesive degradation over time. In the literature, many studies have shown that the adhesive layer is a permeable membrane and can fail over timebecause ofits continuous plasticizing and degradation when in contact with water. Therefore, avoiding thick adhesive layers may minimize these problems and provide long-term success for adhesive restorations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This study evaluated the ability of benzalkonium chloride (BAC) to bind to dentine and to inhibit soluble recombinant MMPs and bound dentine matrix metalloproteinases (MMPs). Methods: Dentine powder was prepared from extracted human molars. Half was left mineralized; the other half was completely demineralized. The binding of BAG to dentine powder was followed by measuring changes in the supernatant concentration using UV spectrometry. The inhibitory effects of BAC on rhMMP-2, -8 and -9 were followed using a commercially available in vitro proteolytic assay. Matrix-bound endogenous MMP-activity was evaluated in completely demineralized beams. Each beam was either dipped into BAG and then dropped into 1 mL of a complete medium (CM) or they were placed in 1 mL of CM containing BAG for 30 days. After 30 days, changes in the dry mass of the beams or in the hydroxyproline (HYP) content of hydrolysates of the media were quantitated as indirect measures of matrix collagen hydrolysis by MMPs. Results: Demineralized dentine powder took up 10-times more BAG than did mineralized powder. Water rinsing removed about 50% of the bound BAC, whilst rinsing with 0.5 M NaCl removed more than 90% of the bound BAG. BAG concentrations 0.5 wt% produced 100% inhibition of soluble recombinant MMP-2, -8 or -9, and inhibited matrix-bound MMPs between 55 and 66% when measured as mass loss or 76-81% when measured as solubilization of collagen peptide fragments. Conclusions: BAC is effective at inhibiting both soluble recombinant MMPs and matrix-bound dentine MMPs in the absence of resins. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The aim of this study was to explore the therapeutic opportunities of each step of 3-step etch-and-rinse adhesives. Methods: Etch-and-rinse adhesive systems are the oldest of the multi-generation evolution of resin bonding systems. In the 3-step version, they involve acid-etching, priming and application of a separate adhesive. Each step can accomplish multiple goals. Acid-etching, using 32-37% phosphoric acid (pH 0.1-0.4) not only simultaneously etches enamel and dentin, but the low pH kills many residual bacteria. Results: Some etchants include anti-microbial compounds such as benzalkonium chloride that also inhibits matrix metalloproteinases (MMPs) in dentin. Primers are usually water and HEMA-rich solutions that ensure complete expansion of the collagen fibril meshwork and wet the collagen with hydrophilic monomers. However, water alone can re-expand dried dentin and can also serve as a vehicle for protease inhibitors or protein cross-linking agents that may increase the durability of resin-dentin bonds. In the future, ethanol or other water-free solvents may serve as dehydrating primers that may also contain antibacterial quaternary ammonium methacrylates to inhibit dentin MMPs and increase the durability of resin-dentin bonds. The complete evaporation of solvents is nearly impossible. Significance: Manufacturers may need to optimize solvent concentrations. Solvent-free adhesives can seal resin-dentin interfaces with hydrophobic resins that may also contain fluoride and antimicrobial compounds. Etch-and-rinse adhesives produce higher resin-dentin bonds that are more durable than most 1 and 2-step adhesives. Incorporation of protease inhibitors in etchants and/or cross-linking agents in primers may increase the durability of resin-dentin bonds. The therapeutic potential of etch-and-rinse adhesives has yet to be fully exploited. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of storage condition and duration on the resistance to fracture of different fiber post systems (and to morphologically assess the post structure before and after storage. Methods: Three types of fiber posts (DT Light Post, GC Post, FRC Postect Plus) were divided in different groups (n=12) according to the storage condition (dry at 37 degrees C; saline water at 37 degrees C; mineral oil at 37 degrees C and storage inside the roots of extracted human teeth immersed in saline water at 37 degrees C and duration (6, 12 months). A universal testing machine loading at a 90 degrees angle was employed for the three-point bending test. The test was carried out until fracture of the post. A 3-way ANOVA and Tukey`s test (alpha= 0.05) were used to compare the effect of the experimental factors on the fracture strength. Two posts of each group were observed before and after the storage using a scanning electron microscope. Results: Storage condition and post type had a significant effect on post fracture strength (P< 0.05). The interaction between these factors was significant (P< 0.05). Water storage significantly decreased the fracture strength, regardless of the post type and the storage duration. Storage inside roots, in oil, and at dry conditions did not significantly affect post fracture strength. SEM micrographs revealed voids between fibers and resin matrix for posts stored in water. Posts stored under the other conditions showed a compact matrix without porosities. (Am J Dent 2009;22:366-370).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. Materials and Methods: One hundred specimens were made using a Teflon matrix (1.5cmx0.5mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA-Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p = 0.05). Results: Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. Conclusions: All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To assess the in situ color stability, surface and the tooth/restoration interface degradation of a silorane-based composite (P90, 3M ESPE) after accelerated artificial ageing (AAA), in comparison with other dimethacrylate monomer-based composites (Z250/Z350, 3M ESPE and Esthet-X, Dentsply). Methods: Class V cavities (25 mm(2) x 2 mmdeep) were prepared in 48 bovine incisors, which were randomly allocated into 4 groups of 12 specimens each, according to the type of restorative material used. After polishing, 10 specimens were submitted to initial color readings (Easyshade, Vita) and 2 to analysis by scanning electronic microscopy (SEM). Afterwards, the teeth were submitted to AAA for 384 h, which corresponds to 1 year of clinical use, after which new color readings and microscopic images were obtained. The values obtained for the color analysis were submitted to statistical analysis (1-way ANOVA, Tukey, p < 0.05). Results: With regard to color stability, it was verified that all the composites showed color alteration above the clinically acceptable levels (Delta E >= 3.3), and that the silorane-based composite showed higher Delta E (18.6), with a statistically significant difference in comparison with the other composites (p < 0.05). The SEM images showed small alterations for the dimethacrylate-based composites after AAA and extensive degradation for the silorane-based composite with a rupture at the interface between the matrix/particle. Conclusion: It may be concluded that the silorane-based composite underwent greater alteration with regard to color stability and greater surface and tooth/restoration interface degradation after AAA. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. In the present study we examined the relationship between solvent uptake into a model membrane (silicone) with the physical properties of the solvents (e.g., solubility parameter, melting point, molecular weight) and its potential predictability. We then assessed the subsequent topical penetration and retention kinetics of hydrocortisone from various solvents to define whether modifications to either solute diffusivity or partitioning were dominant in increasing permeability through solvent-modified membranes. Methods. Membrane sorption of solvents was determined from weight differences following immersion in individual solvents, corrected for differences in density. Permeability and retention kinetics of H-3-hydrocortisone, applied as saturated solutions in the various solvents, were determined over 48 h in horizontal Franz-type glass diffusion cells. Results. Solvent sorption into the membrane could be related to differences in solubility parameters, MW and hydrogen bonding (r(2) = 0.76). The actual and predicted volume of solvent sorbed into the membrane was also found to be linearly related to Log hydrocortisone flux, with changes in both diffusivity and partitioning of hydrocortisone observed for the different solvent vehicles. Conclusions. A simple structure-based predictive model can be applied to the sorption of solvents into silicone membranes. Changes in solute diffusivity and partitioning appeared to contribute to the increased hydrocortisone flux observed with the various solvent vehicles. The application of this predictive model to the more complex skin membrane remains to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SQ, one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These a-re important considerations when formulating a veterinary transdermal product when such compounds ate added, either intentionally or otherwise, for their penetration enhancement ability. (C) 2001 Elsevier Science B.V. All rights reserved.