865 resultados para Solar-system
Resumo:
Water ice covers the surface of various objects in the outer Solar system.Within the heliopause, surface ice is constantly bombarded and sputtered by energetic particles from the solar wind and magnetospheres. We report a laboratory investigation of the sputtering yield of water ice when irradiated at 10 K by 4 keV singly (13C+, N+, O+, Ar+) and doubly charged ions (13C2+, N2+, O2+). The experimental values for the sputtering yields are in good agreement with the prediction of a theoretical model. There is no significant difference in the yield for singly and doubly charged ions. Using these yields, we estimate the rate of water ice erosion in the outer Solar system objects due to solar wind sputtering. Temperature-programmed desorption of the ice after irradiation with 13C+ and 13C2+ demonstrated the formation of 13CO and 13CO2, with 13CO being the dominant formed species.
Resumo:
Although the majority of Centaurs are thought to have originated in the scattered disk, with the high-inclination members coming from the Oort cloud, the origin of the high-inclination component of trans-Neptunian objects (TNOs) remains uncertain. We report the discovery of a retrograde TNO, which we nickname “Niku,” detected by the Pan-STARRS 1 Outer Solar System Survey. Our numerical integrations show that the orbital dynamics of Niku are very similar to that of 2008 KV42 (Drac), with a half-life of ˜500 Myr. Comparing similar high-inclination TNOs and Centaurs (q > 10 au, a <100 au, and i > 60°), we find that these objects exhibit a surprising clustering of ascending node, and occupy a common orbital plane. This orbital configuration has high statistical significance: 3.8-σ. An unknown mechanism is required to explain the observed clustering. This discovery may provide a pathway to investigating a possible reservoir of high-inclination objects.
Resumo:
Studies of the physical properties of trans-Neptunian objects (TNOs) are a powerful probe into the processes of planetesimal formation and solar system evolution. James Webb Space Telescope (JWST) will provide unique new capabilities for such studies. Here, we outline where the capabilities of JWST open new avenues of investigation, potentially valuable observations and surveys, and conclude with a discussion of community actions that may serve to enhance the eventual science return of JWST's TNO observations.
Resumo:
Numerical modelling and simulations are needed to develop and test specific analysis methods by providing test data before BIRDY would be launched. This document describes the "satellite data simulator" which is a multi-sensor, multi-spectral satellite simulator produced especially for the BIRDY mission which could be used as well to analyse data from other satellite missions providing energetic particles data in the Solar system.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
O gradual consumo de energia primária a nível mundial deu origem a uma crise não só ambiental como também económica, proveniente das limitações das reservas energéticas e do fornecimento. Estas inquietações têm levado a um estudo cada vez mais aprofundado no que concerne à eficiência energética de edifícios. É neste contexto que surge o estudo da aplicação dos materiais de mudança de fase (PCM) na térmica dos edifícios. O presente trabalho consiste no estudo da influência da introdução de materiais de mudança de fase no comportamento térmico de um edifício. Foi analisada uma simulação numérica para um sistema solar passivo de ganho direto, por um programa de simulação designado EXTEND™. Efetuou-se, também, o estudo paramétrico de determinadas propriedades associadas aos materiais de mudança de fase. Após a análise, foi testado o impacto, em termos de conforto, da utilização de materiais de mudança de fase em sistemas solares passivos de ganho direto.
Resumo:
Terrestrial planets produce crusts as they differentiate. The Earth’s bi-modal crust, with a high-standing granitic continental crust and a low-standing basaltic oceanic crust, is unique in our solar system and links the evolution of the interior and exterior of this planet. Here I present geochemical observations to constrain processes accompanying crustal formation and evolution. My approach includes geochemical analyses, quantitative modeling, and experimental studies. The Archean crustal evolution project represents my perspective on when Earth’s continental crust began forming. In this project, I utilized critical element ratios in sedimentary records to track the evolution of the MgO content in the upper continental crust as a function time. The early Archean subaerial crust had >11 wt. % MgO, whereas by the end of Archean its composition had evolved to about 4 wt. % MgO, suggesting a transition of the upper crust from a basalt-like to a more granite-like bulk composition. Driving this fundamental change of the upper crustal composition is the widespread operation of subduction processes, suggesting the onset of global plate tectonics at ~ 3 Ga (Abstract figure). Three of the chapters in this dissertation leverage the use of Eu anomalies to track the recycling of crustal materials back into the mantle, where Eu anomaly is a sensitive measure of the element’s behavior relative to neighboring lanthanoids (Sm and Gd) during crustal differentiation. My compilation of Sm-Eu-Gd data for the continental crust shows that the average crust has a net negative Eu anomaly. This result requires recycling of Eu-enriched lower continental crust to the mantle. Mass balance calculations require that about three times the mass of the modern continental crust was returned into the mantle over Earth history, possibly via density-driven recycling. High precision measurements of Eu/Eu* in selected primitive glasses of mid-ocean ridge basalt (MORB) from global MORs, combined with numerical modeling, suggests that the recycled lower crustal materials are not found within the MORB source and may have at least partially sank into the lower mantle where they can be sampled by hot spot volcanoes. The Lesser Antilles Li isotope project provides insights into the Li systematics of this young island arc, a representative section of proto-continental crust. Martinique Island lavas, to my knowledge, represent the only clear case in which crustal Li is recycled back into their mantle source, as documented by the isotopically light Li isotopes in Lesser Antilles sediments that feed into the fore arc subduction trench. By corollary, the mantle-like Li signal in global arc lavas is likely the result of broadly similar Li isotopic compositions between the upper mantle and bulk subducting sediments in most arcs. My PhD project on Li diffusion mechanism in zircon is being carried out in extensive collaboration with multiple institutes and employs analytical, experimental and modeling studies. This ongoing project, finds that REE and Y play an important role in controlling Li diffusion in natural zircons, with Li partially coupling to REE and Y to maintain charge balance. Access to state-of-art instrumentation presented critical opportunities to identify the mechanisms that cause elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. My work here elucidates the elemental fractionation associated with plasma plume condensation during laser ablation and particle-ion conversion in the ICP.
Resumo:
Current space exploration has transpired through the use of chemical rockets, and they have served us well, but they have their limitations. Exploration of the outer solar system, Jupiter and beyond will most likely require a new generation of propulsion system. One potential technology class to provide spacecraft propulsion and power systems involve thermonuclear fusion plasma systems. In this class it is well accepted that d-He3 fusion is the most promising of the fuel candidates for spacecraft applications as the 14.7 MeV protons carry up to 80% of the total fusion power while ‘s have energies less than 4 MeV. The other minor fusion products from secondary d-d reactions consisting of 3He, n, p, and 3H also have energies less than 4 MeV. Furthermore there are two main fusion subsets namely, Magnetic Confinement Fusion devices and Inertial Electrostatic Confinement (or IEC) Fusion devices. Magnetic Confinement Fusion devices are characterized by complex geometries and prohibitive structural mass compromising spacecraft use at this stage of exploration. While generating energy from a lightweight and reliable fusion source is important, another critical issue is harnessing this energy into usable power and/or propulsion. IEC fusion is a method of fusion plasma confinement that uses a series of biased electrodes that accelerate a uniform spherical beam of ions into a hollow cathode typically comprised of a gridded structure with high transparency. The inertia of the imploding ion beam compresses the ions at the center of the cathode increasing the density to the point where fusion occurs. Since the velocity distributions of fusion particles in an IEC are essentially isotropic and carry no net momentum, a means of redirecting the velocity of the particles is necessary to efficiently extract energy and provide power or create thrust. There are classes of advanced fuel fusion reactions where direct-energy conversion based on electrostatically-biased collector plates is impossible due to potential limits, material structure limitations, and IEC geometry. Thermal conversion systems are also inefficient for this application. A method of converting the isotropic IEC into a collimated flow of fusion products solves these issues and allows direct energy conversion. An efficient traveling wave direct energy converter has been proposed and studied by Momota , Shu and further studied by evaluated with numerical simulations by Ishikawa and others. One of the conventional methods of collimating charged particles is to surround the particle source with an applied magnetic channel. Charged particles are trapped and move along the lines of flux. By introducing expanding lines of force gradually along the magnetic channel, the velocity component perpendicular to the lines of force is transferred to the parallel one. However, efficient operation of the IEC requires a null magnetic field at the core of the device. In order to achieve this, Momota and Miley have proposed a pair of magnetic coils anti-parallel to the magnetic channel creating a null hexapole magnetic field region necessary for the IEC fusion core. Numerically, collimation of 300 eV electrons without a stabilization coil was demonstrated to approach 95% at a profile corresponding to Vsolenoid = 20.0V, Ifloating = 2.78A, Isolenoid = 4.05A while collimation of electrons with stabilization coil present was demonstrated to reach 69% at a profile corresponding to Vsolenoid = 7.0V, Istab = 1.1A, Ifloating = 1.1A, Isolenoid = 1.45A. Experimentally, collimation of electrons with stabilization coil present was demonstrated experimentally to be 35% at 100 eV and reach a peak of 39.6% at 50eV with a profile corresponding to Vsolenoid = 7.0V, Istab = 1.1A, Ifloating = 1.1A, Isolenoid = 1.45A and collimation of 300 eV electrons without a stabilization coil was demonstrated to approach 49% at a profile corresponding to Vsolenoid = 20.0V, Ifloating = 2.78A, Isolenoid = 4.05A 6.4% of the 300eV electrons’ initial velocity is directed to the collector plates. The remaining electrons are trapped by the collimator’s magnetic field. These particles oscillate around the null field region several hundred times and eventually escape to the collector plates. At a solenoid voltage profile of 7 Volts, 100 eV electrons are collimated with wall and perpendicular component losses of 31%. Increasing the electron energy beyond 100 eV increases the wall losses by 25% at 300 eV. Ultimately it was determined that a field strength deriving from 9.5 MAT/m would be required to collimate 14.7 MeV fusion protons from d-3He fueled IEC fusion core. The concept of the proton collimator has been proven to be effective to transform an isotropic source into a collimated flow of particles ripe for direct energy conversion.
Resumo:
A investigação em didáctica das ciências tem mostrado que a generalidade dos alunos manifesta cada vez menos interesse para aprender ciências. No entanto, o incremento da importância de temas científicos no nosso dia-a-dia, exige dos indivíduos um conhecimento científico cada vez mais aprofundado. O estudo da Astronomia permite abordar e interligar os conteúdos de tisica mais facilmente, tomando possível a aproximação do conhecimento científico ao conhecimento do quotidiano, mostrando a estreita ligação entre a Física, a Sociedade e a Tecnologia. O processo de ensino-aprendizagem encontra-se em mudança devido à integração das T.I.C. Através da internet e tirando partido da multimédia é possível desenvolver uma formação científica adequada que contribua para o despertar da curiosidade e do interesse dos alunos pela Ciência. Tendo em conta os pressupostos anteriores pretende-se, com este estudo, desenvolver uma plataforma de e-learning e recursos multimédia que satisfaçam estes requisitos. ABSTRACT; The investigation in didactics of sciences has been showing that the generality of students show less and less interest to learn sciences. However, the increment of the importance of scientific themes in our day-to-day life, demands from the individuals an increasingly deeper scientific knowledge. The study of Astronomy allows to approach and to interconnect physics subjects more easily, making possible the approach of scientific knowledge to the knowledge of everyday life, showing the narrow connection among Physics, Society and Technology. The teaching-learning process is in change duet the integration of the I.C.T. Through the internet and taking advantage of multimedia it is possible to develop an appropriate scientific formation that contributes to the awakening of curiosity and of the student's interest for Science. Having in mind the previous presuppositions is intended, with this study, to develop an e-learning platform and multimedia resources that satisfy these requirements.
Resumo:
Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae's initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds-methyl isocyanate, acetone, propionaldehyde, and acetamide-that had not previously been reported in comets.
Resumo:
One of the most exciting discoveries in astrophysics of the last last decade is of the sheer diversity of planetary systems. These include "hot Jupiters", giant planets so close to their host stars that they orbit once every few days; "Super-Earths", planets with sizes intermediate to those of Earth and Neptune, of which no analogs exist in our own solar system; multi-planet systems with planets smaller than Mars to larger than Jupiter; planets orbiting binary stars; free-floating planets flying through the emptiness of space without any star; even planets orbiting pulsars. Despite these remarkable discoveries, the field is still young, and there are many areas about which precious little is known. In particular, we don't know the planets orbiting Sun-like stars nearest to our own solar system, and we know very little about the compositions of extrasolar planets. This thesis provides developments in those directions, through two instrumentation projects.
The first chapter of this thesis concerns detecting planets in the Solar neighborhood using precision stellar radial velocities, also known as the Doppler technique. We present an analysis determining the most efficient way to detect planets considering factors such as spectral type, wavelengths of observation, spectrograph resolution, observing time, and instrumental sensitivity. We show that G and K dwarfs observed at 400-600 nm are the best targets for surveys complete down to a given planet mass and out to a specified orbital period. Overall we find that M dwarfs observed at 700-800 nm are the best targets for habitable-zone planets, particularly when including the effects of systematic noise floors caused by instrumental imperfections. Somewhat surprisingly, we demonstrate that a modestly sized observatory, with a dedicated observing program, is up to the task of discovering such planets.
We present just such an observatory in the second chapter, called the "MINiature Exoplanet Radial Velocity Array," or MINERVA. We describe the design, which uses a novel multi-aperture approach to increase stability and performance through lower system etendue, as well as keeping costs and time to deployment down. We present calculations of the expected planet yield, and data showing the system performance from our testing and development of the system at Caltech's campus. We also present the motivation, design, and performance of a fiber coupling system for the array, critical for efficiently and reliably bringing light from the telescopes to the spectrograph. We finish by presenting the current status of MINERVA, operational at Mt. Hopkins observatory in Arizona.
The second part of this thesis concerns a very different method of planet detection, direct imaging, which involves discovery and characterization of planets by collecting and analyzing their light. Directly analyzing planetary light is the most promising way to study their atmospheres, formation histories, and compositions. Direct imaging is extremely challenging, as it requires a high performance adaptive optics system to unblur the point-spread function of the parent star through the atmosphere, a coronagraph to suppress stellar diffraction, and image post-processing to remove non-common path "speckle" aberrations that can overwhelm any planetary companions.
To this end, we present the "Stellar Double Coronagraph," or SDC, a flexible coronagraphic platform for use with the 200" Hale telescope. It has two focal and pupil planes, allowing for a number of different observing modes, including multiple vortex phase masks in series for improved contrast and inner working angle behind the obscured aperture of the telescope. We present the motivation, design, performance, and data reduction pipeline of the instrument. In the following chapter, we present some early science results, including the first image of a companion to the star delta Andromeda, which had been previously hypothesized but never seen.
A further chapter presents a wavefront control code developed for the instrument, using the technique of "speckle nulling," which can remove optical aberrations from the system using the deformable mirror of the adaptive optics system. This code allows for improved contrast and inner working angles, and was written in a modular style so as to be portable to other high contrast imaging platforms. We present its performance on optical, near-infrared, and thermal infrared instruments on the Palomar and Keck telescopes, showing how it can improve contrasts by a factor of a few in less than ten iterations.
One of the large challenges in direct imaging is sensing and correcting the electric field in the focal plane to remove scattered light that can be much brighter than any planets. In the last chapter, we present a new method of focal-plane wavefront sensing, combining a coronagraph with a simple phase-shifting interferometer. We present its design and implementation on the Stellar Double Coronagraph, demonstrating its ability to create regions of high contrast by measuring and correcting for optical aberrations in the focal plane. Finally, we derive how it is possible to use the same hardware to distinguish companions from speckle errors using the principles of optical coherence. We present results observing the brown dwarf HD 49197b, demonstrating the ability to detect it despite it being buried in the speckle noise floor. We believe this is the first detection of a substellar companion using the coherence properties of light.
Resumo:
Over the past decades star formation has been a very attractive field because knowledge of star formation leads to a better understanding of the formation of planets and thus of our solar system but also of the evolution of galaxies. Conditions leading to the formation of high-mass stars are still under investigation but an evolutionary scenario has been proposed: As a cold pre-stellar core collapses under gravitational force, the medium warms up until it reaches a temperature of 100 K and enters the hot molecular core (HMC) phase. The forming central proto-star accretes materials, increasing its mass and luminosity and eventually it becomes sufficiently evolved to emit UV photons which irradiate the surrounding environment forming a hyper compact (HC) and then a ultracompact (UC) HII region. At this stage, a very dense and very thin internal photon-dominated region (PDR) forms between the HII region and the molecular core. Information on the chemistry allows to trace the physical processes occurring in these different phases of star formation. Formation and destruction routes of molecules are influenced by the environment as reaction rates depend on the temperature and radiation field. Therefore, chemistry also allows the determination of the evolutionary stage of astrophysical objects through the use of chemical models including the time evolution of the temperature and radiation field. Because HMCs host a very rich chemistry with high abundances of complex organic molecules (COMs), several astrochemical models have been developed to study the gas phase chemistry as well as grain chemistry in these regions. In addition to HMCs models, models of PDRs have also been developed to study in particular photo-chemistry. So far, few studies have investigated internal PDRs and only in the presence of outflows cavities. Thus, these unique regions around HC/UCHII regions remain to be examined thoroughly. My PhD thesis focuses on the spatio-temporal chemical evolution in HC/UC HII regions with internal PDRs as well as in HMCs. The purpose of this study is first to understand the impact and effects of the radiation field, usually very strong in these regions, on the chemistry. Secondly, the goal is to study the emission of various tracers of HC/UCHII regions and compare it with HMCs models, where the UV radiation field does not impact the region as it is immediately attenuated by the medium. Ultimately we want to determine the age of a given region using chemistry in combination with radiative transfer.
Resumo:
The signature of 60Fe in deep-sea crusts indicates that one or more supernovae exploded in the solar neighbourhood about 2.2 million years ago1–4. Recent isotopic analysis is consistent with a core-collapse or electron-capture supernova that occurred 60 to 130 parsecs from the Sun5. Moreover, peculiarities in the cosmic ray spectrum point to a nearby supernova about two million years ago6. The Local Bubble of hot, diffuse plasma, in which the Solar System is embedded, originated from 14 to 20 supernovae within a moving group, whose surviving members are now in the Scorpius– Centaurus stellar association7,8. Here we report calculations of the most probable trajectories and masses of the supernova progenitors, and hence their explosion times and sites. The 60Fe signal arises from two supernovae at distances between 90 and 100 parsecs. The closest occurred 2.3 million years ago at present-day galactic coordinates l = 327°, b = 11°, and the second-closest exploded about 1.5 million years ago at l = 343°, b = 25°, with masses of 9.2 and 8.8 times the solar mass, respectively. The remaining supernovae, which formed the Local Bubble, contribute to a smaller extent because they happened at larger distances and longer ago (60Fe has a half- life of 2.6 million years9,10). There are uncertainties relating to the nucleosynthesis yields and the loss of 60Fe during transport, but they do not influence the relative distribution of 60Fe in the crust layers, and therefore our model reproduces the measured relative abundances very well.