926 resultados para Sol-gel method
Near-infrared luminescence from sol-gel materials doped with holmium(III) and thulium(III) complexes
Resumo:
A series of ternary Ln(tta)(3)L complexes (Ln = Ho, Tm; Htta = 2-thenoyltrifluoroacetone; L = 1,10-phenanthroline, 2,2'-bipyridine, or triphenyl phosphate oxide) and their corresponding sol-gel hybrid materials formed via the in situ synthesis process (designated as Ln-T-L gel) were reported. The complexes and the gels were studied in detail, which suggest the complexes have been successfully synthesized in the corresponding gels.
Resumo:
A sol-gel process has been developed to prepare polyimide (PI)/Al2O3 hybrid films with different contents of Al2O3 based on pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) as monomers. FESEM and TEM images indicated that Al2O3 particles are relatively well dispersed in the polyimide matrix after ultrasonic treatment of the sol from aluminum isopropoxide and thermal imidization of the gel film. The dimensional stability, thermal stability, mechanical properties of hybrid PI films were improved obviously by an addition of adequate Al2O3 content, whereas, dielectric property and the elongation at break decreased with the increase of Al2O3 content. Surprisingly, the corona-resistance property of hybrid film was improved greatly with increasing Al2O3 content within certain range as compared with pure PI film.
Resumo:
Lu3Ga5O12:Eu3+, Lu3Ga5O12:Tb3+, and Lu3Ga5O12:Pr3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence, and cathodoluminescence spectra were utilized to characterize the synthesized phosphors. The XRD results reveal that the sample begins to crystallize at 800 degrees C and fully crystallined pure Lu3Ga5O12 phase can be obtained at 1000 degrees C. The FESEM image indicates that the phosphor sample is composed of aggregated rice grainlike particles with sizes around 80-120 nm.
Resumo:
An electrochemiluminescent glucose biosensor was proposed based on gold nanoparticle-catalyzed luminol electrochemiluminescence (ECL). Gold nanoparticles were self-assembled onto silica sol-gel network, and then glucose oxidase was adsorbed on the surface of gold nanoparticles. The surface assembly process and the electrochemistry and ECL behaviors of the biosensor were investigated. The assembled gold nanoparticles could efficiently electrocatalyze luminol ECL ECL intensity of the biosensor depended on scan rate, luminol concentration, and size of gold nanoparticles.
Resumo:
We developed a stable, sensitive electrochemiluminescence (ECL) biosensor based on the synthesis of a new sol-gel material with the ion-exchange capacity sol-gel to coimmobilize the Ru(bpy)(3)(2+) and enzyme. The partial sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) film acted as both an ion exchanger for the immobilization of Ru(bpy)(3)(2+) and a matrix to immobilize gold nanoparticles (AuNPs). The AuNPs/PSSG/Ru(bpy)(3)(2+) film modified electrode allowed sensitive the ECL detection of NADH as low as 1 nM. Such an ability of AuNPs/PSSG/Ru(bpy)(3)(2+) film to promote the electron transfer between Ru(bpy)(3)(2+) and the electrode suggested a new, promising biocompatible platform for the development of dehydrogenase-based ECL biosensors. With alcohol dehydrogenase (ADH) as a model, we then constructed an ethanol biosensor, which had a linear range of 5 mu M to 5.2 mM with a detection limit of 12 nM.
Resumo:
LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. The XRD results reveal that the fully crystalline pure LaAlO3 Phase can be obtained at 800 degrees C. The FE-SEM image indicates that the phosphor samples are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light (230 nm) and low-voltage electron beams (1-3 kV), the LaAlO3:Tm3+ and LaAlO3:Tb3+ phosphors show the characteristic emissions of Tb3+ (D-1(2)-> H-3(6,4),F-3(4) transitions) and Tm3+ (D-5(3,4)-> F-7(6,5,4,3) transitions) respectively. The CL of the LaAlO3:Tm3+ phosphors have high color purity and comparable intensity to the Y2SiO5:Ce3+ commercial product, and the CL colors of Tb3+-doped LaAlO3 phosphors can be tuned from blue to green by changing the doping concentration of Tb3+ to some extent.
Resumo:
One-dimensional SrAl2O4:Eu2+, Dy3+ fibers were fabricated by a simple electrospinning combined with sol-gel process. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and photoluminescence were used to characterize the fibers. The results show that the phase structure of SrAl2O4:Eu2+, Dy3+ belongs to a monoclinic one, the composite fibers and fibers calcined at high temperature remain the original one-dimensional texture, and the SrAl2O4:Eu2+, Dy3+ was a green emission. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate get matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O-2 and H2O2, which is superior to that immobilized in silica sol-gel film.
Monolithic carbon aerogels from sol-gel polymerization of phenolic resoles and methylolated melamine
Resumo:
The electroactivity of polyaniline was extended to pH = 14 alkaline media by preparation of a novel electrostatic interaction conductive hybrid from water-borne conductive polyaniline and silica network containing carboxyl groups via sol-gel process. In addition, the obtained conductive polyaniline hybrid film displayed very low conductivity threshold percolation and demonstrated excellent stability upon cycling.
Resumo:
In this work, a polyelectrolyte-functionalized ionic liquid (PFIL) was firstly incorporated into a sol-gel organic-inorganic hybrid material (PFIL/sol-gel). This new composite material was used to immobilize glucose oxidase on a glassy carbon electrode. An enhanced current response towards glucose was obtained, relative to a control case without PFIL. In addition, chronoamperometry showed that electroactive mediators diffused at a rate 10 times higher in the apparent diffusion coefficient in PFIL-containing matrices. These findings suggest a potential application in bioelectroanalytical chemistry.