943 resultados para Software analysis
Resumo:
Disseminated leishmaniasis (DL) differs from other clinical forms of the disease due to the presence of many non-ulcerated lesions (papules and nodules) in non-contiguous areas of the body. We describe the histopathology of DL non-ulcerated lesions and the presence of CD4-, CD20-, CD68-, CD31- and von Willebrand factor (vW)-positive cells in the inflamed area. We analysed eighteen biopsies from non-ulcerated lesions and quantified the inflamed areas and the expression of CD4, CD20, CD68, CD31 and vW using Image-Pro software (Media Cybernetics). Diffuse lymphoplasmacytic perivascular infiltrates were found in dermal skin. Inflammation was observed in 3-73% of the total biopsy area and showed a significant linear correlation with the number of vW+ vessels. The most common cells were CD68+ macrophages, CD20+ B-cells and CD4+ T-cells. A significant linear correlation between CD4+ and CD20+ cells and the size of the inflamed area was also found. Our findings show chronic inflammation in all DL non-ulcerated lesions predominantly formed by macrophages, plasmacytes and T and B-cells. As the inflamed area expanded, the number of granulomas and extent of the vascular framework increased. Thus, we demonstrate that vessels may have an important role in the clinical evolution of DL lesions.
Resumo:
An analysis of the dietary content of haematophagous insects can provide important information about the transmission networks of certain zoonoses. The present study evaluated the potential of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mitochondrial cytochrome B (cytb) gene to differentiate between vertebrate species that were identified as possible sources of sandfly meals. The complete cytb gene sequences of 11 vertebrate species available in the National Center for Biotechnology Information database were digested with Aci I, Alu I, Hae III and Rsa I restriction enzymes in silico using Restriction Mapper software. The cytb gene fragment (358 bp) was amplified from tissue samples of vertebrate species and the dietary contents of sandflies and digested with restriction enzymes. Vertebrate species presented a restriction fragment profile that differed from that of other species, with the exception of Canis familiaris and Cerdocyon thous. The 358 bp fragment was identified in 76 sandflies. Of these, 10 were evaluated using the restriction enzymes and the food sources were predicted for four: Homo sapiens (1), Bos taurus (1) and Equus caballus (2). Thus, the PCR-RFLP technique could be a potential method for identifying the food sources of arthropods. However, some points must be clarified regarding the applicability of the method, such as the extent of DNA degradation through intestinal digestion, the potential for multiple sources of blood meals and the need for greater knowledge regarding intraspecific variations in mtDNA.
Resumo:
Percutaneous transluminal renal angioplasty (PTRA) is an invasive technique that is costly and involves the risk of complications and renal failure. The ability of PTRA to reduce the administration of antihypertensive drugs has been demonstrated. A potentially greater benefit, which nevertheless remains to be proven, is the deferral of the need for chronic dialysis. The aim of the study (ANPARIA) was to assess the appropriateness of PTRA to impact on the evolution of renal function. A standardized expert panel method was used to assess the appropriateness of medical treatment alone or medical treatment with revascularization in various clinical situations. The choice of revascularization by either PTRA or surgery was examined for each clinical situation. Analysis was based on a detailed literature review and on systematically elicited expert opinion, which were obtained during a two-round modified Delphi process. The study provides detailed responses on the appropriateness of PTRA for 1848 distinct clinical scenarios. Depending on the major clinical presentation, appropriateness of revascularization varied from 32% to 75% for individual scenarios (overal 48%). Uncertainty as to revascularization was 41% overall. When revascularization was appropriate, PTRA was favored over surgery in 94% of the scenarios, except in certain cases of aortic atheroma where sugery was the preferred choice. Kidney size [7 cm, absence of coexisting disease, acute renal failure, a high degree of stenosis (C70%), and absence of multiple arteries were identified as predictive variables of favorable appropriateness ratings. Situations such as cardiac failure with pulmonary edema or acute thrombosis of the renal artery were defined as indications for PTRA. This study identified clinical situations in which PTRA or surgery are appropriate for renal artery disease. We built a decision tree which can be used via Internet: the ANPARIA software (http://www.chu-clermontferrand.fr/anparia/). In numerous clinical situations uncertainty remains as to whether PTRA prevents deterioration of renal function.
Resumo:
Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.
Resumo:
Purpose: IOL centration and stability after cataract surgery is of high interest for cataract surgeons and IOL-producing companies. We present a new imaging software to evaluate the centration of the rhexis and the centration of the IOL after cataract surgery.Methods: We developed, in collaboration with the Biomedical Imaging Group (BIG), EPFL, Lausanne, a new working tool in order to assess precisely outcomes after IOL-implantation, such as ideal capsulorhexis and IOL-centration. The software is a plug-in of ImageJ, a general-purpose image processing and image-analysis package. The specifications of this software are: evaluation of the rhexis-centration and evaluation the position of the IOL in the posterior chamber. The end points are to analyze the quality of the centration of a rhexis after cataract surgery, the deformation of the rhexis with capsular bag retraction and the centration of the IOL after implantation.Results: This software delivers tools to interactively measure the distances between limbus, IOL and capsulorhexis and its changes over time. The user is invited to adjust nodes of three radial curves for the limbus, rhexis and the optic of the IOL. The radial distances of the curves are computed to evaluate the IOL implantation. The user is also able to define patterns for ideal capsulorhexis and optimal IOL-centration. We are going to present examples of calculations after cataract surgery.Conclusions: Evaluation of the centration of the rhexis and of the IOL after cataract surgery is an important end point for optimal IOL implantation after cataract surgery. Especially multifocal or accommodative lenses need a precise position in the bag with a good stability over time. This software is able to evaluate these parameters just after the surgery but also its changes over time. The results of these evaluations can lead to an optimizing of surgical procedures and materials.
Resumo:
BACKGROUND: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. RESULTS: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called "RodCellJ", allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. CONCLUSIONS: "RodCell" is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. AVAILABILITY: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the publication).
Resumo:
Earth System Models (ESM) have been successfuly developed over past few years, and are currently beeing used for simulating present day-climate, seasonal to interanual predictions of climate change. The supercomputer performance plays an important role in climate modeling since one of the challenging issues for climate modellers is to efficiently and accurately couple earth System components on present day computers architectures. At the Barcelona Supercomputing Center (BSC), we work with the EC- Earth System Model. The EC- Earth is an ESM, which currently consists of an atmosphere (IFS) and an ocean (NEMO) model that communicate with each other through the OASIS coupler. Additional modules (e.g. for chemistry and vegetation ) are under development. The EC-Earth ESM has been ported successfully over diferent high performance computin platforms (e.g, IBM P6 AIX, CRAY XT-5, Intelbased Linux Clusters, SGI Altix) at diferent sites in Europ (e.g., KNMI, ICHEC, ECMWF). The objective of the first phase of the project was to identify and document the issues related with the portability and performance of EC-Earth on the MareNostrum supercomputer, a System based on IBM PowerPC 970MP processors and run under a Linux Suse Distribution. EC-Earth was successfully ported to MareNostrum, and a compilation incompatibilty was solved by a two step compilation approach using XLF version 10.1 and 12.1 compilers. In addition, the EC-Earth performance was analyzed with respect to escalability and trace analysis with the Paravear software. This analysis showed that EC-Earth with a larger number of IFS CPUs (<128) is not feasible at the moment since some issues exists with the IFS-NEMO balance and MPI Communications.
Resumo:
Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains are relatively small (80-120 residues) protein binding modules central in the organization of receptor clusters and in the association of cellular proteins. Their main function is to bind C-terminals of selected proteins that are recognized through specific amino acids in their carboxyl end. Binding is associated with a deformation of the PDZ native structure and is responsible for dynamical changes in regions not in direct contact with the target. We investigate how this deformation is related to the harmonic dynamics of the PDZ structure and show that one low-frequency collective normal mode, characterized by the concerted movements of different secondary structures, is involved in the binding process. Our results suggest that even minimal structural changes are responsible for communication between distant regions of the protein, in agreement with recent NMR experiments. Thus, PDZ domains are a very clear example of how collective normal modes are able to characterize the relation between function and dynamics of proteins, and to provide indications on the precursors of binding/unbinding events.
Resumo:
In this paper we examine some of the economic forces that underlie economic growth at the county level. In an effort to describe a much more comprehensive regional economic growth model, we address a variety of different growth hypotheses by introducing a large number of growth related variables. When formulating our hypotheses and specifying our growth model we make liberal use of GIS (geographical information systems) mapping software to “paint” a picture of where growth spots exist. Our empirical estimation indicates that amenities, state and local tax burdens, population, amount of primary agriculture activity, and demographics have important impacts on economic growth.
Resumo:
Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available.
Resumo:
Exploratory and descriptive study based on quantitative and qualitative methods that analyze the phenomenon of violence against adolescents based on gender and generational categories. The data source was reports of violence from the Curitiba Protection Network from 2010 to 2012 and semi-structured interviews with 16 sheltered adolescents. Quantitative data were analyzed using SPSS software version 20.0 and the qualitative data were subjected to content analysis. The adolescents were victims of violence in the household and outside of the family environment, as victims or viewers of violence. The violence was experienced at home, mostly toward girls, with marked overtones of gender violence. More than indicating the magnitude of the issue, this study can give information to help qualify the assistance given to victimized people and address how to face this issue.
Resumo:
Background: The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties.Results: We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php.Conclusions: BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.
Resumo:
Signal search analysis is a general method to discover and characterize sequence motifs that are positionally correlated with a functional site (e.g. a transcription or translation start site). The method has played an instrumental role in the analysis of eukaryotic promoter elements. The signal search analysis server provides access to four different computer programs as well as to a large number of precompiled functional site collections. The programs offered allow: (i) the identification of non-random sequence regions under evolutionary constraint; (ii) the detection of consensus sequence-based motifs that are over- or under-represented at a particular distance from a functional site; (iii) the analysis of the positional distribution of a consensus sequence- or weight matrix-based sequence motif around a functional site; and (iv) the optimization of a weight matrix description of a locally over-represented sequence motif. These programs can be accessed at: http://www.isrec.isb-sib.ch/ssa/.
Resumo:
A family of scaling corrections aimed to improve the chi-square approximation of goodness-of-fit test statistics in small samples, large models, and nonnormal data was proposed in Satorra and Bentler (1994). For structural equations models, Satorra-Bentler's (SB) scaling corrections are available in standard computer software. Often, however, the interest is not on the overall fit of a model, but on a test of the restrictions that a null model say ${\cal M}_0$ implies on a less restricted one ${\cal M}_1$. If $T_0$ and $T_1$ denote the goodness-of-fit test statistics associated to ${\cal M}_0$ and ${\cal M}_1$, respectively, then typically the difference $T_d = T_0 - T_1$ is used as a chi-square test statistic with degrees of freedom equal to the difference on the number of independent parameters estimated under the models ${\cal M}_0$ and ${\cal M}_1$. As in the case of the goodness-of-fit test, it is of interest to scale the statistic $T_d$ in order to improve its chi-square approximation in realistic, i.e., nonasymptotic and nonnormal, applications. In a recent paper, Satorra (1999) shows that the difference between two Satorra-Bentler scaled test statistics for overall model fit does not yield the correct SB scaled difference test statistic. Satorra developed an expression that permits scaling the difference test statistic, but his formula has some practical limitations, since it requires heavy computations that are notavailable in standard computer software. The purpose of the present paper is to provide an easy way to compute the scaled difference chi-square statistic from the scaled goodness-of-fit test statistics of models ${\cal M}_0$ and ${\cal M}_1$. A Monte Carlo study is provided to illustrate the performance of the competing statistics.
Resumo:
Acute brain slices are slices of brain tissue that are kept vital in vitro for further recordings and analyses. This tool is of major importance in neurobiology and allows the study of brain cells such as microglia, astrocytes, neurons and their inter/intracellular communications via ion channels or transporters. In combination with light/fluorescence microscopies, acute brain slices enable the ex vivo analysis of specific cells or groups of cells inside the slice, e.g. astrocytes. To bridge ex vivo knowledge of a cell with its ultrastructure, we developed a correlative microscopy approach for acute brain slices. The workflow begins with sampling of the tissue and precise trimming of a region of interest, which contains GFP-tagged astrocytes that can be visualised by fluorescence microscopy of ultrathin sections. The astrocytes and their surroundings are then analysed by high resolution scanning transmission electron microscopy (STEM). An important aspect of this workflow is the modification of a commercial cryo-ultramicrotome to observe the fluorescent GFP signal during the trimming process. It ensured that sections contained at least one GFP astrocyte. After cryo-sectioning, a map of the GFP-expressing astrocytes is established and transferred to correlation software installed on a focused ion beam scanning electron microscope equipped with a STEM detector. Next, the areas displaying fluorescence are selected for high resolution STEM imaging. An overview area (e.g. a whole mesh of the grid) is imaged with an automated tiling and stitching process. In the final stitched image, the local organisation of the brain tissue can be surveyed or areas of interest can be magnified to observe fine details, e.g. vesicles or gold labels on specific proteins. The robustness of this workflow is contingent on the quality of sample preparation, based on Tokuyasu's protocol. This method results in a reasonable compromise between preservation of morphology and maintenance of antigenicity. Finally, an important feature of this approach is that the fluorescence of the GFP signal is preserved throughout the entire preparation process until the last step before electron microscopy.