926 resultados para Slow Crack-growth


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper discusses the role of institutions and structural change in shaping income inequality. It is argued that while social expenditure and direct redistribution are crucial for improving income distribution, sustainable equality requires structural change to create decent jobs. The relative importance of these variables in different countries is analyzed and a typology suggested. It is argued that the most equal countries in the world combine strong institutions in favor of redistribution and knowledge-intensive production structures that sustain growth and employment in the long run. Both institutions and the production structure in Latin America fail to foster equality and this explains its extremely high levels of inequality. The last decade witnessed significant advances in reducing inequality in Latin America, but these advances are threatened by slow productivity growth and weak structural change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural health monitoring (SHM) refers to the procedure of assessing the structure conditions continuously so it is an alternative to conventional nondestructive evaluation (NDE) techniques [1]. With the growing developments in sensor technology acoustic emission (AE) technology has been attracting attention in SHM applications. AE are characterized by waves produced by the sudden internal stress redistribution caused by the changes in the internal structure, such as fatigue, crack growth, corrosion, etc. Piezoelectric materials such as Lead Zirconate Titanate (PZT) ceramic have been widely used as sensor due to its high electromechanical coupling factor and piezoelectric d coefficients. Because of the poor mechanical characteristic and the lack in the formability of the ceramic, polymer matrix-based piezoelectric composites have been studied in the last decade in order to obtain better properties in comparison with a single phase material. In this study a composite film made of polyurethane (PU) and PZT ceramic particles partially recovered with polyaniline (PAni) was characterized and used as sensor for AE detection. Preliminary results indicate that the presence of a semiconductor polymer (PAni) recovering the ceramic particles, make the poling process easier and less time consuming. Also, it is possible to observe that there is a great potential to use such type of composite as sensor for structure health monitoring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work a study of an API 5L X70 steel, which is used in the manufacture of oil and gas pipelines, has been made. This class of steel show high strength and ductility values, and has been increasingly studied due the growing demand of oil and natural gas, which in consequence, increases the needing of new pipelines to transport them. The material studied has been directly taken from a tube provided by TenarisConfab, and a special attention has been given to the fatigue crack growth rate study, which proved that a crack will grow at different rates according to the tube position where it is growing

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Acral lentiginous melanoma is a melanoma with poor prognosis which is frequently diagnosed at an advanced stage. Since the thickness of tumour is one of the main prognostic factors, this case can exemplify how important complete histological analyses looking for focal invasiveness can be.Case report: A 77 year-old woman with a black spot with slow progressive growth on the left plantar region. She sought medical attention due to the expansion onto the dorsal surface of toes. The lesion had irregular borders and had spread to half the plantar surface. Histopathology confirmed the clinical suspicion of acral lentiginous melanoma Clark level IV and 2.6 mm Breslow thickness. The surgical specimen was entirely processed for histological evaluation, requiring 53 slides. Tumor dermal invasion was detected in only three out of 53 glass slides as the invasiveness was not identified by clinical, dermatoscopy or macroscopy exams.Conclusion: Sectioning through the entire lesion is considered very important to determinate the appropriate stage of the disease and the correct treatment and patient follow-up.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We obtain the Paris law of fatigue crack propagation in a fuse network model where the accumulated damage in each resistor increases with time as a power law of the local current amplitude. When a resistor reaches its fatigue threshold, it burns irreversibly. Over time, this drives cracks to grow until the system is fractured into two parts. We study the relation between the macroscopic exponent of the crack-growth rate -entering the phenomenological Paris law-and the microscopic damage accumulation exponent, gamma, under the influence of disorder. The way the jumps of the growing crack, Delta a, and the waiting time between successive breaks, Delta t, depend on the type of material, via gamma, are also investigated. We find that the averages of these quantities, <Delta a > and <Delta t >/< t(r)>, scale as power laws of the crack length a, <Delta a > proportional to a(alpha) and <Delta t >/< t(r)> proportional to a(-beta), where < t(r)> is the average rupture time. Strikingly, our results show, for small values of gamma, a decrease in the exponent of the Paris law in comparison with the homogeneous case, leading to an increase in the lifetime of breaking materials. For the particular case of gamma = 0, when fatigue is exclusively ruled by disorder, an analytical treatment confirms the results obtained by simulation. Copyright (C) EPLA, 2012

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relatively young discipline of astronautics represents one of the scientifically most fascinating and technologically advanced achievements of our time. The human exploration in space does not offer only extraordinary research possibilities but also demands high requirements from man and technology. The space environment provides a lot of attractive experimental tools towards the understanding of fundamental mechanism in natural sciences. It has been shown that especially reduced gravity and elevated radiation, two distinctive factors in space, influence the behavior of biological systems significantly. For this reason one of the key objectives on board of an earth orbiting laboratory is the research in the field of life sciences, covering the broad range from botany, human physiology and crew health up to biotechnology. The Columbus Module is the only European low gravity platform that allows researchers to perform ambitious experiments in a continuous time frame up to several months. Biolab is part of the initial outfitting of the Columbus Laboratory; it is a multi-user facility supporting research in the field of biology, e.g. effect of microgravity and space radiation on cell cultures, micro-organisms, small plants and small invertebrates. The Biolab IEC are projects designed to work in the automatic part of Biolab. In this moment in the TO-53 department of Airbus Defence & Space (formerly Astrium) there are two experiments that are in phase C/D of the development and they are the subject of this thesis: CELLRAD and CYTOSKELETON. They will be launched in soft configuration, that means packed inside a block of foam that has the task to reduce the launch loads on the payload. Until 10 years ago the payloads which were launched in soft configuration were supposed to be structural safe by themselves and a specific structural analysis could be waived on them; with the opening of the launchers market to private companies (that are not under the direct control of the international space agencies), the requirements on the verifications of payloads are changed and they have become much more conservative. In 2012 a new random environment has been introduced due to the new Space-X launch specification that results to be particularly challenging for the soft launched payloads. The last ESA specification requires to perform structural analysis on the payload for combined loads (random vibration, quasi-steady acceleration and pressure). The aim of this thesis is to create FEM models able to reproduce the launch configuration and to verify that all the margins of safety are positive and to show how they change because of the new Space-X random environment. In case the results are negative, improved design solution are implemented. Based on the FEM result a study of the joins has been carried out and, when needed, a crack growth analysis has been performed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research on adhesive joints is arousing increasing interest in aerospace industry. Incomplete knowledge of fatigue in adhesively bonded joints is a major obstacle to their application. The prediction of the disbonding growth is yet an open question. This thesis researches the influence of the adhesive thickness on fatigue disbond growth. Experimental testing on specimens with different thickness has been performed. Both a conventional approach based on the strain energy release rate and an approach based on cyclic strain energy are provided. The inadequacy of the former approach is discussed. Outcomes from tests support the idea of correlating the crack growth rate to the cyclic strain energy. In order to push further the study, a 2D finite element model for the prediction of disbond growth under quasi-static loading has been developed and implemented in Abaqus. Numerical simulations have been conducted with different values of the adhesive thickness. The results from tests and simulations are in accordance with each other. According to them, no dependence of disbonding on the adhesive thickness has been evidenced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In bacterial meningitis, several pharmacodynamic factors determine therapeutic success-when defined as sterilization of the CSF: (1) Local host defense deficits in the CNS require the use of bactericidal antibiotics to sterilize the CSF. (2) CSF antibiotic concentrations that are at least 10-fold above the MBC are necessary for maximal bactericidal activity. Protein binding, low pH, and slow bacterial growth rates are among the factors that may explain the high antibiotic concentrations necessary in vivo. (3) High CSF peak concentrations that lead to rapid bacterial killing appear more important than prolonged suprainhibitory concentrations, probably because very low residual levels in the CSF prevent bacterial regrowth, even during relatively long dosing intervals. (4) Penetration of antibiotics into the CSF is significantly impaired by the blood-brain barrier and thus, very high serum levels are necessary to achieve the CSF concentrations required for optimal bactericidal activity. Beyond these principles, recent data suggests that rapid lytic killing of bacteria in the CSF may have harmful effects on the brain because of the release of biologically active products from the lysed bacteria. Since rapid CSF sterilization remains a key therapeutic goal, the harmful consequences of bacterial lysis present a major challenge in the therapy of bacterial meningitis. Currently, dexamethasone represents that only clinically beneficial approach to reduce the harmful effects of bacterial lysis, and novel approaches are required to improve the outcome of this serious infection.