536 resultados para Sliding
Resumo:
We present new results on the output control of uncertain dynamical systems. The design method uses dynamical compensators to turn the compensated plant into a strictly positive real system, and then chooses the control law-for example, a sliding mode control. This result is compared with another result from the literature which uses static compensators. An example is presented where the control with dynamic compensation works while a static compensation does not.
Resumo:
The consequences of the use of embedded crack finite elements with uniform discontinuity modes (opening and sliding) to simulate crack propagation in concrete are investigated. It is shown the circumstances in which the consideration of uniform discontinuity modes is not suitable to accurately model the kinematics induced by the crack and must be avoided. It is also proposed a technique to embed cracks with non-uniform discontinuity modes into standard displacement-based finite elements to overcome the shortcomings of the uniform discontinuity modes approach.
Resumo:
This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.
Resumo:
The wear rate of the dual-phase steel ABNT-1020 tempered at 450°C sliding against cemented steel ABNT-1020 in function of load value is investigated in wide load range. The alteration in behavior of this function at intermediate load level, like in the case of low hardness steel sliding against high hardness steel, is observed. The analysis by scanning electronic microscope before and after this alteration showed a change of wear mechanism from plastic displacement to embrittlement.
Resumo:
Aluminum matrix composites are currently considered as promising materials for tribological applications in the automotive, aircraft and aerospace industries due to their great advantage of a high strength-to-weight ratio. A superior combination of surface and bulk mechanical properties can be attained if these composites are processed as functionally graded materials (FGM's). In this work, homogeneous aluminum based matrix composite, cast by gravity, and aluminum composites with functionally graded properties, obtained by centrifugal cast, are tested against nodular cast iron in a pin-on-disc tribometer. Three different volume fractions of SiC reinforcing particles in each FGM were considered in order to evaluate their friction and wear properties. The sliding experiments were conducted without lubrication, at room temperature, under a normal load of 5 N and constant sliding speed of 0.5 ms-1. The worn surfaces as well as the wear debris were characterized by SEM/EDS and by atomic force microscopy (AFM). The friction coefficient revealed a slightly decrease (from 0.60 to 0.50) when FGM's are involved in the contact instead of the homogeneous composite. Relatively low values of the wear coefficient were obtained for functionally graded aluminum matrix composites (≈10-6 mm3N-1 m-1), which exhibited superior wear resistance than the homogeneous composite and the opposing cast iron surface. Characterization of worn surfaces indicated that the combined effect of reinforcing particles as load bearing elements and the formation of protective adherent iron-rich tribolayers has a decisive role on the friction and wear properties of aluminum matrix composites.
Resumo:
In engineering practical systems the excitation source is generally dependent on the system dynamic structure. In this paper we analyze a self-excited oscillating system due to dry friction which interacts with an energy source of limited power supply (non ideal problem). The mechanical system consists of an oscillating system sliding on a moving belt driven by a limited power supply. In the oscillating system considered here, dry friction acts as an excitation mechanism for stick-slip oscillations. The stick-slip chaotic oscillations are investigated because the knowledge of their dynamic characteristics is an important step in system design and control. Many engineering systems present stick-slip chaotic oscillations such as machine tools, oil well drillstrings, car brakes and others.
Resumo:
Purpose: Selecting artificial teeth for edentulous patients is difficult when pre-extraction records are not available. Various guidelines have been suggested for determining the width of the maxillary anterior denture teeth. This study was undertaken to evaluate the use of the nasal width as a guide for the selection of proper width maxillary anterior denture teeth in four racial groups of the Brazilian population. Materials and Methods: One hundred and sixty subjects (40 Whites, 40 Mulattos, 40 Blacks, and 40 Asians) were selected. Using a sliding caliper, the nasal width and the intercanine distance were measured. The Pearson product-moment correlation coefficient was used to determine the relationship between the above measurements. A prediction was made of the percentage of subjects of the White, Mulatto, Black, and Asian populations in which the selection error due to the clinical application of the method of the nasal width would be within 0 to 2 mm, within 2 to 4 mm, and greater than 4 mm. Results: The four racial groups showed a weak correlation between the intercanine distance and the nasal width. In 39.7% of the White, 55.7% of the Mulatto, 81.9% of the Black, and 48.2% of the Asian populations, errors greater than 4 mm would be present with the use of the nasal width. Conclusions: The correlation found between the intercanine distance and the nasal width was not high enough to be used as a predictive factor. The relationship between natural tooth width and artificial tooth width as predicted by the nasal width showed that the nasal width method is not accurate for all the studied groups. Copyright © 2006 by The American College of Prosthodontists.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The environmental analysis is an important tool used in forecasting and mitigation of environmental problems. Focusing on the occupation of marginal areas of the Corumbataí River in an urban stretch in the city of Rio Claro (SP), this study aimed to gather information on situations of risk, both to the environment and the population, verified in that area. Through field observation and in specific studies, the geological and geotechnical aspects, the characteristics of surface waters and aspects of urbanization were analyzed. The results show that the environmental problems diagnosed are related to lack of planning in the occupation of the area. Moreover, the natural characteristics of the physical environment expose people to risks such as floods and soil slides.
Resumo:
This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a two-cell dc-dc buck converter and a control circuit design using the software PSpice is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently-proposed alternative sliding-mode control technique. The dc-dc power converters are very used in industrial applications, for instance, in power systems of hybrid electric vehicles and aircrafts. Good results were obtained and the proposed design is also inexpensive because it uses electric components that can be easily found for the hardware implementation. Future researches on the subject include the hardware validation of the dc-dc converter controller and the robust control design of switched systems, with structural failures. © 2011 IEEE.
Resumo:
This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a non-trivial dc-dc power converter and a simple and inexpensive control circuit design, that was simulated using the software PSpice, is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently proposed alternative sliding-mode control technique. © 2011 IFAC.
Resumo:
This paper presents a control method that is effective to reduce the degenerative effects of delay time caused by a treacherous network. In present application a controlled DC motor is part of an inverted pendulum and provides the equilibrium of this system. The control of DC motor is accomplished at the distance through a treacherous network, which causes delay time in the control signal. A predictive technique is used so that it turns the system free of delay. A robust digital sliding mode controller is proposed to control the free-delay system. Due to the random conditions of the network operation, a delay time detection and accommodation strategy is also proposed. A computer simulation is shown to illustrate the design procedures and the effectiveness of the proposed method. © 2011 IEEE.
Resumo:
In this paper, a trajectory tracking control problem for a nonholonomic mobile robot by the integration of a kinematic neural controller (KNC) and a torque neural controller (TNC) is proposed, where both the kinematic and dynamic models contains disturbances. The KNC is a variable structure controller (VSC) based on the sliding mode control theory (SMC), and applied to compensate the kinematic disturbances. The TNC is a inertia-based controller constituted of a dynamic neural controller (DNC) and a robust neural compensator (RNC), and applied to compensate the mobile robot dynamics, and bounded unknown disturbances. Stability analysis with basis on Lyapunov method and simulations results are provided to show the effectiveness of the proposed approach. © 2012 Springer-Verlag.
Resumo:
Temporomandibular joint (TMJ) disorder is a term that encompasses a number of overlapping conditions, such as closed lock. Closed lock of the TMJ is considered a consequence of a nonreducing deformed disc acting as an obstacle to the sliding condylar head that usually causes a decrease in the maximum mouth opening and acute pain. The management of the TMJ is still controversial. Thus, arthrocentesis of the TMJ is a valuable modification of the traditional method of arthroscopic lavage, which consists of washing the joint in order to remove chemical inflammatory mediators and intra-articular adhesions, changing intra-articular pressure. TMJ disorder has always presented as a therapeutic challenge to maxillofacial surgeons. Therefore, this paper aimed to describe a clinical report of a closed lock of the left TMJ in a 19-year-old female subject who was successfully treated by arthrocentesis procedure. © 2013 by Mutaz B. Habal, MD.