907 resultados para Sleep homeostasis
Resumo:
We hypothesized that a function of sleep is to replenish brain glycogen stores that become depleted while awake. We have previously tested this hypothesis in three inbred strains of mice by measuring brain glycogen after a 6h sleep deprivation (SD). Unexpectedly, glycogen content in the cerebral cortex did not decrease with SD in two of the strains and was even found to increase in mice of the C57BL/6J (B6) strain. Manipulations that initially induce glycogenolysis can also induce subsequent glycogen synthesis thereby elevating glycogen content beyond baseline. It is thus possible that in B6 mice, cortical glycogen content decreased early during SD and became elevated later in SD. In the present study, we therefore measured changes in brain glycogen over the course of a 6 h SD and during recovery sleep in B6 mice. We found no evidence of a decrease at any time during the SD, instead, cortical glycogen content monotonically increased with time-spent-awake and, when sleep was allowed, started to revert to control levels. Such a time-course is opposite to the one predicted by our initial hypothesis. These results demonstrate that glycogen synthesis can be achieved during prolonged wakefulness to the extent that it outweighs glycogenolysis. Maintaining this energy store seems thus not to be functionally related to sleep in this strain.
Resumo:
The contribution of genes, environment and gene-environment interactions to sleep disorders is increasingly recognized. Well-documented familial and twin sleep disorder studies suggest an important influence of genetic factors. However, only few sleep disorders have an established genetic basis including four rare diseases that may result from a single gene mutation: fatal familial insomnia, familial advanced sleep-phase syndrome, chronic primary insomnia, and narcolepsy with cataplexy. However, most sleep disorders are complex in terms of their genetic susceptibility together with the variable expressivity of the phenotype even within a same family. Recent linkage, genome-wide and candidate gene association studies resulted in the identification of gene mutations, gene localizations, or evidence for susceptibility genes and/or loci in several sleep disorders. Molecular techniques including mainly genome-wide linkage and association studies are further required to identify the contribution of new genes. These identified susceptibility genetic determinants will provide clues to better understand pathogenesis of sleep disorders, to assess the risk for diseases and also to find new drug targets to treat and to prevent the underlying conditions. We reviewed here the role of genetic basis in most of key sleep disorders.
Resumo:
Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.
Resumo:
Natural killer T (NKT) cells express a T cell receptor (TCR) and markers common to NK cells, including NK1.1. In vivo, NKT cells are triggered by anti-CD3epsilon MAb to rapidly produce large amounts of IL-4 and by IL-12 to reject tumors. We show here that anti-CD3epsilon MAb treatment rapidly depletes the liver (and partially the spleen) of NKT cells and that homeostasis is achieved 1 to 2 days later via NKT cell proliferation that occurs mainly in bone marrow. Similar results were obtained in mice treated with IL-12. Collectively, our data demonstrate that peripheral NKT cells are highly sensitive to activation-induced cell death and that bone marrow plays a major role in restoring NKT cell homeostasis.
Resumo:
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many cells and tissues including pancreatic beta-cells, liver, skeletal muscle, and adipocytes. This study investigates the potential role of MIF in carbohydrate homeostasis in a physiological setting outside of severe inflammation, utilizing Mif knockout (MIF-/-) mice. Compared with wild-type (WT) mice, MIF-/- mice had a lower body weight, from birth until 4 months of age, but subsequently gained weight faster, resulting in a higher body weight at 12 months of age. The lower weight in young mice was related to a higher energy expenditure, and the higher weight in older mice was related to an increased food intake and a higher fat mass. Fasting blood insulin level was higher in MIF-/- mice compared with WT mice at any age. After i.p. glucose injection, the elevation of blood insulin level was higher in MIF-/- mice compared with WT mice, at 2 months of age, but was lower in 12-month-old MIF-/- mice. As a result, the glucose clearance during intraperitoneal glucose tolerance tests was higher in MIF-/- mice compared with WT mice until 4 months of age, and was lower in 12-month-old MIF-/- mice. Insulin resistance was estimated (euglycemic-hyperinsulinemic clamp tests), and the phosphorylation activity of AKT was similar in MIF-/- mice and WT mice. In conclusion, this mouse model provides evidence for the role of MIF in the control of glucose homeostasis.
Resumo:
In this study, we show that an inhibitor of sphingolipid biosynthesis, d,l-threo-1-phenyl-2- decanoylamino-3-morpholino-1-propanol (PDMP), inhibits brefeldin A (BFA)-induced retrograde membrane transport from Golgi to endoplasmic reticulum (ER). If BFA treatment was combined with or preceded by PDMP administration to cells, disappearance of discrete Golgi structures did not occur. However, when BFA was allowed to exert its effect before PDMP addition, PDMP could not ¿rescue¿ the Golgi compartment. Evidence is presented showing that this action of PDMP is indirect, which means that the direct target is not sphingolipid metabolism at the Golgi apparatus. A fluorescent analogue of PDMP, 6-(N-[7-nitro-2,1,3-benzoxadiazol-4-yl]amino)hexanoyl-PDMP (C6-NBD-PDMP), did not localize in the Golgi apparatus. Moreover, the effect of PDMP on membrane flow did not correlate with impaired C6-NBD-sphingomyelin biosynthesis and was not mimicked by exogenous C6-ceramide addition or counteracted by exogenous C6-glucosylceramide addition. On the other hand, the PDMP effect was mimicked by the multidrug resistance protein inhibitor MK571. The effect of PDMP on membrane transport correlated with modulation of calcium homeostasis, which occurred in a similar concentration range. PDMP released calcium from at least two independent calcium stores and blocked calcium influx induced by either extracellular ATP or thapsigargin. Thus, the biological effects of PDMP revealed a relation between three important physiological processes of multidrug resistance, calcium homeostasis, and membrane flow in the ER/ Golgi system.
Resumo:
Here we review the results of our recent studies on neurodegeneration together with data on cerebral calcium precipitation in animal models and humans. A model that integrates the diversity of mechanisms involved in neurodegeneration is presented and discussed based on the functional relevance of calcium precipitation.
Resumo:
The aim of this work was to develop a low-cost circuit for real-time analog computation of the respiratory mechanical impedance in sleep studies. The practical performance of the circuit was tested in six patients with obstructive sleep apnea. The impedance signal provided by the analog circuit was compared with the impedance calculated simultaneously with a conventional computerized system. We concluded that the low-cost analog circuit developed could be a useful tool for facilitating the real-time assessment of airway obstruction in routine sleep studies.
Resumo:
Plants maintain stem cells in their meristems as a source for new undifferentiated cells throughout their life. Meristems are small groups of cells that provide the microenvironment that allows stem cells to prosper. Homeostasis of a stem cell domain within a growing meristem is achieved by signalling between stem cells and surrounding cells. We have here simulated the origin and maintenance of a defined stem cell domain at the tip of Arabidopsis shoot meristems, based on the assumption that meristems are self-organizing systems. The model comprises two coupled feedback regulated genetic systems that control stem cell behaviour. Using a minimal set of spatial parameters, the mathematical model allows to predict the generation, shape and size of the stem cell domain, and the underlying organizing centre. We use the model to explore the parameter space that allows stem cell maintenance, and to simulate the consequences of mutations, gene misexpression and cell ablations.
Resumo:
Rest or sleep in all animal species constitutes a period of quiescence necessary for recovery from activity. Whether rest and activity observed in all organisms share a similar fundamental molecular basis with sleep and wakefulness in mammals has not yet been established. In addition and in contrast to the circadian system, strong evidence that sleep is regulated at the transcriptional level is lacking. Nevertheless, several studies indicate that single genesmay regulate some specific aspects of sleep. Efforts to better understand or confirm the role of known neurotransmission pathways in sleep-wake regulation using transgenic approaches resulted so far in only limited new insights. Recent gene expression profiling efforts in rats, mice, and fruit flies are promising and suggest that only a few gene categories are differentially regulated by behavioral state. How molecular analysis can help us to understand sleep is the focus of this chapter.
Resumo:
OBJECTIVE: Sleep disordered breathing with central apnea or hypopnea frequently occurs at high altitude and is thought to be caused by a decrease in blood CO(2) level. The aim of this study was to assess the effects of added respiratory dead space on sleep disordered breathing.¦METHODS: Full polysomnographies were performed on 12 unacclimatized swiss mountaineers (11 males, 1 female, mean age 39±12 y.o.) in Leh, Ladakh (3500m). In random order, half of the night was spent with a 500ml increase in dead space through a custom designed full face mask and the other half without it.¦RESULTS: Baseline data revealed two clearly distinct groups: one with severe sleep disordered breathing (n=5, AHI>30) and the other with moderate to no disordered breathing (n=7, AHI<30). DS markedly improved breathing in the first group (baseline vs DS): apnea hypopnea index (AHI) 70.3±25.8 vs 29.4±6.9 (p=0.013), oxygen desaturation index (ODI): 72.9±24.1/h vs 42.5±14.4 (p=0.031), whereas it had no significant effect in the second group or in the total population. Respiratory events were almost exclusively central apnea or hypopnea. Microarousal index, sleep efficiency, and sleep architecture remained unchanged with DS. A minor increase in mean PtcCO(2) (n=3) was observed with DS.¦CONCLUSION: A 500ml increase in dead space through a fitted mask may improve nocturnal breathing in mountaineers with severe altitude-induced sleep disordered breathing.
Resumo:
The circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice). Analysis of Bmal1(lox/lox)/Ren1(d)Cre mice showed that the floxed Bmal1 allele was excised in the kidney. In the kidney, BMAL1 protein expression was absent in the renin-secreting granular cells of the juxtaglomerular apparatus and the collecting duct. A partial reduction of BMAL1 expression was observed in the medullary thick ascending limb. Functional analyses showed that Bmal1(lox/lox)/Ren1(d)Cre mice exhibited multiple abnormalities, including increased urine volume, changes in the circadian rhythm of urinary sodium excretion, increased GFR, and significantly reduced plasma aldosterone levels. These changes were accompanied by a reduction in BP. These results show that local renal circadian clocks control body fluid and BP homeostasis.
Resumo:
BACKGROUND: Positional therapy that prevents patients from sleeping supine has been used for many years to manage positional obstructive sleep apnea (OSA). However, patients' usage at home and the long term efficacy of this therapy have never been objectively assessed.¦METHODS: Sixteen patients with positional OSA who refused or could not tolerate continuous positive airway pressure (CPAP) were enrolled after a test night study (T0) to test the efficacy of the positional therapy device. The patients who had a successful test night were instructed to use the device every night for three months. Nightly usage was monitored by an actigraphic recorder placed inside the positional device. A follow-up night study (T3) was performed after three months of positional therapy.¦RESULTS: Patients used the device on average 73.7 ± 29.3% (mean ± SD) of the nights for 8.0 ± 2.0 h/night. 10/16 patients used the device more than 80% of the nights. Compared to the baseline (diagnostic) night, mean apnea-hypopnea index (AHI) decreased from 26.7 ± 17.5 to 6.0 ± 3.4 with the positional device (p<0.0001) during T0 night. Oxygen desaturation (3%) index also fell from 18.4 ± 11.1 to 7.1 ± 5.7 (p = 0.001). Time spent supine fell from 42.8 ± 26.2% to 5.8 ± 7.2% (p < 0.0001). At three months (T3), the benefits persisted with no difference in AHI (p = 0.58) or in time spent supine (p = 0.98) compared to T0 night. The Epworth sleepiness scale showed a significant decrease from 9.4 ± 4.5 to 6.6 ± 4.7 (p = 0.02) after three months.¦CONCLUSIONS: Selected patients with positional OSA can be effectively treated by a positional therapy with an objective compliance of 73.7% of the nights and a persistent efficacy after three months.
Resumo:
The pool of mature T cells comprises a heterogeneous mixture of naive and memory CD4(+) and CD8(+) cells. These cells are long lived at a population level but differ markedly in their relative rates of turnover and survival. Here, we review how contact with exogenous stimuli, notably self MHC ligands and various gamma(c) cytokines, plays a decisive role in controlling normal T cell homeostasis.