956 resultados para Simulated annealing (Matemática)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although the aim of conservation planning is the persistence of biodiversity, current methods trade-off ecological realism at a species level in favour of including multiple species and landscape features. For conservation planning to be relevant, the impact of landscape configuration on population processes and the viability of species needs to be considered. We present a novel method for selecting reserve systems that maximize persistence across multiple species, subject to a conservation budget. We use a spatially explicit metapopulation model to estimate extinction risk, a function of the ecology of the species and the amount, quality and configuration of habitat. We compare our new method with more traditional, area-based reserve selection methods, using a ten-species case study, and find that the expected loss of species is reduced 20-fold. Unlike previous methods, we avoid designating arbitrary weightings between reserve size and configuration; rather, our method is based on population processes and is grounded in ecological theory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A primary purpose of this research is to design a gradient coil that is planar in construction and can be inserted within existing infrastructure. The proposed wave equation method for the design of gradient coils is novel within the field. it is comprehensively shown how this method can be used to design the planar x-, y-, and z-gradient wire windings to produce the required magnetic fields within a certain domain. The solution for the cylindrical gradient coil set is also elucidated. The wave equation technique is compared with the well-known target held method to gauge the quality of resultant design. In the case of the planar gradient coil design, it is shown that using the new method, a set of compact gradient coils with large field of view can be produced. The final design is considerably smaller in dimension when compared with the design obtained using the target field method, and therefore the manufacturing costs and materials required are somewhat reduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the performance of error-correcting codes, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability is obtained for finite K and C. We examine the finite-temperature case to assess the use of simulated annealing for decoding and extend the analysis to accommodate other types of noisy channels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the performance of parity check codes using the mapping onto spin glasses proposed by Sourlas. We study codes where each parity check comprises products of K bits selected from the original digital message with exactly C parity checks per message bit. We show, using the replica method, that these codes saturate Shannon's coding bound for K?8 when the code rate K/C is finite. We then examine the finite temperature case to asses the use of simulated annealing methods for decoding, study the performance of the finite K case and extend the analysis to accommodate different types of noisy channels. The analogy between statistical physics methods and decoding by belief propagation is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accelerated probabilistic modeling algorithms, presenting stochastic local search (SLS) technique, are considered. General algorithm scheme and specific combinatorial optimization method, using “golden section” rule (GS-method), are given. Convergence rates using Markov chains are received. An overview of current combinatorial optimization techniques is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The re-entrant flow shop scheduling problem (RFSP) is regarded as a NP-hard problem and attracted the attention of both researchers and industry. Current approach attempts to minimize the makespan of RFSP without considering the interdependency between the resource constraints and the re-entrant probability. This paper proposed Multi-level genetic algorithm (GA) by including the co-related re-entrant possibility and production mode in multi-level chromosome encoding. Repair operator is incorporated in the Multi-level genetic algorithm so as to revise the infeasible solution by resolving the resource conflict. With the objective of minimizing the makespan, Multi-level genetic algorithm (GA) is proposed and ANOVA is used to fine tune the parameter setting of GA. The experiment shows that the proposed approach is more effective to find the near-optimal schedule than the simulated annealing algorithm for both small-size problem and large-size problem. © 2013 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ATM network optimization problems defined as combinatorial optimization problems are considered. Several approximate algorithms for solving such problems are developed. Results of their comparison by experiments on a set of problems with random input data are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the use of a formal optimisation procedure to optimise a plug-in hybrid electric bus using two different case studies to meet two different performance criteria; minimum journey cost and maximum battery life. The approach is to choose a commercially available vehicle and seek to improve its performance by varying key design parameters. Central to this approach is the ability to develop a representative backward facing model of the vehicle in MATLAB/Simulink along with appropriate optimisation objective and penalty functions. The penalty functions being the margin by which a particular design fails to meet the performance specification. The model is validated against data collected from an actual vehicle and is used to estimate the vehicle performance parameters in a model-in-the-loop process within an optimisation routine. For the purposes of this paper, the journey cost/battery life over a drive cycle is optimised whilst other performance indices are met (or exceeded). Among the available optimisation methods, Powell's method and Simulated Annealing are adopted. The results show this method as a valid alternative modelling approach to vehicle powertrain optimisation. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research is motivated by a practical application observed at a printed circuit board (PCB) manufacturing facility. After assembly, the PCBs (or jobs) are tested in environmental stress screening (ESS) chambers (or batch processing machines) to detect early failures. Several PCBs can be simultaneously tested as long as the total size of all the PCBs in the batch does not violate the chamber capacity. PCBs from different production lines arrive dynamically to a queue in front of a set of identical ESS chambers, where they are grouped into batches for testing. Each line delivers PCBs that vary in size and require different testing (or processing) times. Once a batch is formed, its processing time is the longest processing time among the PCBs in the batch, and its ready time is given by the PCB arriving last to the batch. ESS chambers are expensive and a bottleneck. Consequently, its makespan has to be minimized. ^ A mixed-integer formulation is proposed for the problem under study and compared to a formulation recently published. The proposed formulation is better in terms of the number of decision variables, linear constraints and run time. A procedure to compute the lower bound is proposed. For sparse problems (i.e. when job ready times are dispersed widely), the lower bounds are close to optimum. ^ The problem under study is NP-hard. Consequently, five heuristics, two metaheuristics (i.e. simulated annealing (SA) and greedy randomized adaptive search procedure (GRASP)), and a decomposition approach (i.e. column generation) are proposed—especially to solve problem instances which require prohibitively long run times when a commercial solver is used. Extensive experimental study was conducted to evaluate the different solution approaches based on the solution quality and run time. ^ The decomposition approach improved the lower bounds (or linear relaxation solution) of the mixed-integer formulation. At least one of the proposed heuristic outperforms the Modified Delay heuristic from the literature. For sparse problems, almost all the heuristics report a solution close to optimum. GRASP outperforms SA at a higher computational cost. The proposed approaches are viable to implement as the run time is very short. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An emergency is a deviation from a planned course of events that endangers people, properties, or the environment. It can be described as an unexpected event that causes economic damage, destruction, and human suffering. When a disaster happens, Emergency Managers are expected to have a response plan to most likely disaster scenarios. Unlike earthquakes and terrorist attacks, a hurricane response plan can be activated ahead of time, since a hurricane is predicted at least five days before it makes landfall. This research looked into the logistics aspects of the problem, in an attempt to develop a hurricane relief distribution network model. We addressed the problem of how to efficiently and effectively deliver basic relief goods to victims of a hurricane disaster. Specifically, where to preposition State Staging Areas (SSA), which Points of Distributions (PODs) to activate, and the allocation of commodities to each POD. Previous research has addressed several of these issues, but not with the incorporation of the random behavior of the hurricane's intensity and path. This research presents a stochastic meta-model that deals with the location of SSAs and the allocation of commodities. The novelty of the model is that it treats the strength and path of the hurricane as stochastic processes, and models them as Discrete Markov Chains. The demand is also treated as stochastic parameter because it depends on the stochastic behavior of the hurricane. However, for the meta-model, the demand is an input that is determined using Hazards United States (HAZUS), a software developed by the Federal Emergency Management Agency (FEMA) that estimates losses due to hurricanes and floods. A solution heuristic has been developed based on simulated annealing. Since the meta-model is a multi-objective problem, the heuristic is a multi-objective simulated annealing (MOSA), in which the initial solution and the cooling rate were determined via a Design of Experiments. The experiment showed that the initial temperature (T0) is irrelevant, but temperature reduction (δ) must be very gradual. Assessment of the meta-model indicates that the Markov Chains performed as well or better than forecasts made by the National Hurricane Center (NHC). Tests of the MOSA showed that it provides solutions in an efficient manner. Thus, an illustrative example shows that the meta-model is practical.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A job shop with one batch processing and several discrete machines is analyzed. Given a set of jobs, their process routes, processing requirements, and size, the objective is to schedule the jobs such that the makespan is minimized. The batch processing machine can process a batch of jobs as long as the machine capacity is not violated. The batch processing time is equal to the longest processing job in the batch. The problem under study can be represented as Jm:batch:Cmax. If no batches were formed, the scheduling problem under study reduces to the classical job shop scheduling problem (i.e. Jm:: Cmax), which is known to be NP-hard. This research extends the scheduling literature by combining Jm::Cmax with batch processing. The primary contributions are the mathematical formulation, a new network representation and several solution approaches. The problem under study is observed widely in metal working and other industries, but received limited or no attention due to its complexity. A novel network representation of the problem using disjunctive and conjunctive arcs, and a mathematical formulation are proposed to minimize the makespan. Besides that, several algorithms, like batch forming heuristics, dispatching rules, Modified Shifting Bottleneck, Tabu Search (TS) and Simulated Annealing (SA), were developed and implemented. An experimental study was conducted to evaluate the proposed heuristics, and the results were compared to those from a commercial solver (i.e., CPLEX). TS and SA, with the combination of MWKR-FF as the initial solution, gave the best solutions among all the heuristics proposed. Their results were close to CPLEX; and for some larger instances, with total operations greater than 225, they were competitive in terms of solution quality and runtime. For some larger problem instances, CPLEX was unable to report a feasible solution even after running for several hours. Between SA and the experimental study indicated that SA produced a better average Cmax for all instances. The solution approaches proposed will benefit practitioners to schedule a job shop (with both discrete and batch processing machines) more efficiently. The proposed solution approaches are easier to implement and requires short run times to solve large problem instances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chloroperoxidase (CPO), a 298-residue glycosylated protein from the fungus Caldariomyces fumago, is probably the most versatile heme enzyme yet discovered. Interest in CPO as a catalyst is based on its power to produce enantiomerically enriched products. Recent research has focused its attention on the ability of CPO to epoxidize alkenes in high regioselectivity and enantioselectivity as an efficient and environmentally benign alternative to traditional synthetic routes. There has been little work on the nature of ligand binding, which probably controls the regio- and enantiospecifity of CPO. Consequently it is here that we focus our work. We report docking calculations and computer simulations aimed at predicting the enantiospecificity of CPO-catalyzed epoxidation of three model substrates. On the basis of this work candidate mutations to improve the efficiency of CPO are predicted. In order to accomplish these aims, a simulated annealing and molecular dynamics protocol is developed to sample potentially reactive substrate/CPO complexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.