372 resultados para Silicatos de aluminio
Resumo:
This paper presents the study on the application of the electrolytic plasma for surface treatment of aluminum. A bibliographical study on the material of interest was preliminarily performed and later designed and built an electrolytic cell, including the excitation source. Unlike conventional electrolysis process, the plasma assisted carry on in the non-linear region of characteristic current/voltage curve. Therefore it requires for the on set of the process that the power supply operates on harder conditions than those on high current process. The plasma produced during the present investigation has temperatures in the range o 6,0.10 3 -7,0 .10 3 K, well above those found in conventional chemical process. It also shows a particular dynamic to promote changes on surface and to produce new materials. The plasma is generated by microdischarge in vapor or gas bubbles involved in physic-chemical processes in electrode regions of the electrolytic cell. The electrode material was the aluminum (7075). The Process Electrolytic Plasma Processing (EPP) is sensitive to various parameters such as operating voltage, current density, electrolyte, concentration of electrolyte, geometry of reactor, temperature of electrolytic solution and dynamic of the fluid in the cell. The experiments were carried on in order to find parameters for a stable abd steady operation. The choice for the electrolytic was silicate/alkali solution in various concentrations to operate in various voltage as well. Plasma was produced on negative (cathode) and positive (anode) electrode, in specific conditions. A stable operation on the cathode process was obtained with low concentration of the electrolytic in aqueous solution, current density around 250V effective voltage. For the evolution of plasma in anodic process it was required higher concentrations and higher... (Complete abstract click electronic access below)
Resumo:
One of society concerns are preserving the environment and the growing energy demand. These two issues are in conflict since most of the energy used today in some way harms the environment. Then is essential to develop and implement ways to clean and renewable energy. In this way, solar energy stands out as a source of clean energy, renewable, abundant and acessible. Solar energy can be harnessed by photovoltaic cells or by solar collectors. The aim of this article is analysethe yield of the solar heather assembled with hydraulic conductive and plastic bottles using three different materials for hydraulic conductors, in order to compare these efficiences and analyze material which has the best cost-benefit in this type of application. The materials analyzed in this study were copper, aluminum and PVC. For this analysis were assembled three alike solar heaters using each one of these materials, and were done several series of measurements of the temperature water output to each heat with flow between 10 and 30 liters per hour. With these data we can analyze the yield and the performance of copper, aluminum and PVC in this application. So we can conclude that aluminum has a higher efficiency, followed by PVC, and the copper had the lowest efficiency. This behavior kept for all values of flow rates examined
Resumo:
This study aimed to analyze the cooling curves, micro and macrograph alloy Al-1 %Si without the addition of strontium modifier and with the addition of the same. One of the ways of improving mechanical properties of alloy Al -Si is through the modification process. For the experiments two billets of the alloy Al-1%Si cast iron mold in a billet with addition of 0.02% strontium by weight, and the other billet without the addition of modifier were fused. In the solidification process of billet temperature was monitored and recorded every second for later plotting in Origin 8 program and analyzes the cooling curves obtained. The billets were cut and passed by grinding and polishing to perform the macrograph and micrographs. The results concerning the macrograph indicated that billet without the addition of Strontium particle size obtained was more refined than the billet where the strontium modifier was added. Regarding the micrograph, photos stemmed from the optical microscope didn´t show the expected modification effect by the addition of Strontium. This suggests that the low amount of silicon (1 %) present in the alloy used in this study interfered in the change process, because according to the literature review, Strontium 0.022 % by weight is sufficient to fully modify an alloy with 7% Silicon. The results from the cooling curve showed that both the eutectic temperature and the solidification time remained unchanged with the addition of strontium
Resumo:
With the market more and more disputed and negotiations where the customer is the main factor who decides whether the companies have conditions or not to dispute the market, industries must search improvements in products and processes targeting lower costs and better quality. With that in mind, this work will study the actual situation of a line of Tension Leveler, after cold mill process, for aluminum coil, and search new technologies, precisely the Scrap Baller machine, which will raise the quality level and the line’s productivity. It will be analyzed the justifications (reasons) for these new technologies, the history, the involved concepts, the operation, functions, the material that will be tension leveled, the limitations and tech and economic viability in comparison with the actual system. Also it will be taken a brief about the aluminum coil production in Brazil, especially the ones which destiny is aluminum beverage can, and the recycling process, that is very well done in Brazil, worldwide leader in aluminum recycling
Resumo:
This work proposes a study on the materials selections and processes for the manufacture of aircraft and showing a methodology to reduce the manufacturing cost. The DFMA can be understood as a methodology that aims at reducing manufacturing and assembly costs and coupled with the increase of product quality through design simplifications. The most commonly material used in the manufacture of aircraft is aluminum alloys due to these possess great structural strength, good elasticity, and being stainless having a low specific weight (about 1/3 that of steel), reducing the weight of the aircraft. A case study in which an operation in the process of verifying the quality was generating unnecessary costs time / man for the company was also developed. The problem solution was simple, just removing the attachment process. It was found that the DFMA methodology is extremely important for the simplification of processes and projects, contributing to the reduction of manufacturing costs of aircraft
Resumo:
Therebar of aluminum 1350 AA produced by CBA are used inthe manufacture of wires and cables for electric power transmission, which marketshows increasingly favorableto aluminum due to itslow densityand high electrical conductivity, but to ensure that this materialmeets all specifications of projectsfor electricity transmission, it must have homogeneity in the chemicaland mechanicalproperties.One of the points of improvement in the process of rod production isreducing the high variation of the limitof tensile strengthalong the coils, therefore, this work seeks a better understanding of the factors that significantly influence the mechanical properties of rebar, specifically assessing the influence oftemperatureat the output of the coils, which can cause a recovery effect on the material andif thereare relevantdifferences between the two modes of rebar production: auto and manual.Samples of six coils have been specifically produced forthis study, which weresubsequently subjected to different annealing temperatures for one hour and ten minutes, similar to what occurs in the output of the coil from the machine. The tensile tests showed that aluminum 1350 AA is significantly influenced by temperature, whose behavior was very similar to that presented in the literature. It was found that the phenomenon of recovery occurred more significantly at high temperatures. Through the optical electron microscope Zeiss, 18 surface maps were made with 100x magnification for each sample in different conditions and the images were analyzed using entropy and fractal dimension, aiming to relate the condition of surface hardening on mechanical property of the samples in that condition. The results showed that these methods can be applied, provided they do not have any kind of imperfection on the surface, once they can influence the results. The study concluded that a more efficient cooling is required in ... (Complete abstract click electronic access below)
Resumo:
One of the ways to minimize the effects of unproductive time caused by tool wear can be achieved by introducing an efficient system of lubrication and cooling in the process. However, in the last decade the research had the goal to restrict the maximum use of refrigerants and / or lubricants in metal-mechanical production. The important factors that justify this procedure include the operational costs of production, ecological issues, and the legal requirements of environmental conservation and preservation of human health. The purpose of the proposed work is the study of machining by turning with the focus on the influence caused by the application of cutting fluid in several ways of application (abundant and MQF) and also by comparing the results obtained by machining without the presence of fluid . For this purpose, the turning tests are conducted using an aluminum alloy (AA 7075). The response variables to be analyzed were obtained from the roughness (Ra and Ry), the stresses presented (VB) and their progression in relation to the cutting length achieved, the type of chip formed, in addition to changes in the degree of finish (roughness) presented by the turned parts. The results of this study should provide more detailed information about the actual influence of cutting fluids in turning this alloy, which are characterized by high rates of deformation when the formation of damaging your chip machining and also the quality of surface generated. Therefore, it is expected to provide subsidies to promote the optimization of machining this alloy making the most of the role of cutting fluid
Resumo:
The present work aims to study the characteristics of the alloy Al - 7 % Si - 0 , 3Mg ( AA356 ) , more specifically characterize the macrostructure and microstructure and mechanical properties of the alloy ingots AA356 obtained in metal molds and sand molds for power studying the structures through the difference of cooling rates . This alloy is explained by the fact of referring league has excellent combination of properties such as low solidification shrinkage and good fluidity, good weldability , high wear resistance , high strength to weight ratio, has wide application in general engineering , and particularly in the automotive and aerospace engineering . In this work we will verify this difference in properties through two different cooling rates . We monitor the solid solidification temperatures by thermocouples building with them the cooling curve as a tool that will aid us to evaluate the effectiveness of the grain refining because it achieved with some important properties of the alloy as the latent heat of solidification fraction the liquid and solid temperatures, the total solidification time, and identify the presence of inoculants for grain refinement. Thermal analysis will be supported by the study of graphic software “Origin “will be achieved where the cooling curve and its first derivative that is the cooling rate. Made thermal analysis, analysis will be made in macrographs ingots obtained for observation of macrostructures obtained in both types of ingots and also analysis of micrographs where sampling will occur in strategic positions ingots to correlate with the microstructure. Finally will be collecting data from Brinell hardness of ingots and so then correlating the properties of their respective ingots with cooling rate. We found that obtained with cast metal ingots showed superior properties to the ingots obtained with sand mold
Resumo:
The research involving new materials has always been considered as a differential in the development of a technology company. This occurred naturally since ancient times, often motivated by reasons of a certain age, where the most common material used was also the name of your time and may be cited as an example the Bronze Age, and later was the Iron. Currently, the use of firearms are they used in resolving conflicts between countries, or a more equivocal, as an instrument of social banditry make innovations in the area of shielding welcome, whether for personal use, in the form of vests or vehicle such as cars, tanks and even aircraft. In this context, is a Silicon Carbide Ceramic, with low density and high hardness. Thus, the aim of this study is the evaluation and comparison of these materials, seeking to improve their properties by means of additives such as boron and silicon metal and amorphous YAG. For this work, the specimens were pre-shaped by means of uniaxial later to be referred for isostatic pressing and sintering. The maximum percentage for each additive was 5%, except for the YAG whose percentage was 8.2% (mass percentage). All compositions were subjected to the same tests (x-ray diffraction, apparent density, optical microscopy, Vickers hardness, scanning electron Microscopita), so that one could draw a comparison between the materials under study, samples that showed better mechanical properties and micro structural, related here by hardness testing and microscopy (optical and SEM) were the silicon carbide doped with YAG and alumina samples, demonstrating the potential of these materials for ballistic protection. Other compositions have high porosity, which is highly undesirable, since in order to harmful influences on the mechanical properties discussed below
Resumo:
The aim of this study is to characterize the macrostructure and microstructure of Al - 1%Si alloy obtained in sand and metallic molds. Aluminium has good mechanical properties, but adding silicon, even in small quantities, can change the microstructure and improves mechanical behavior. Workpieces were castings in metallic and sand molds and one can see a difference in their cooling curve, macroscopic and microscopic structures. The sand mold casting has lower cooling rate and so its grains are larger. Due to the lower concentration of grain boundary, the hardness is lower compared to that found in metallic molds, which has smaller grains and a higher hardness. Therefore, it can be concluded that the cooling rate and alloying elements affect the final microstructure of the workpiece
Resumo:
It is very important to study the macrostructure of a material in the crude state of solidification due to influence the mechanical properties, as well as the study of their cooling curve. In the present work was to study the alloy AA 356, its macrostructure and its cooling curve. The material was cast in two different molds, a sand and other metallic. In this paper we study the differences in its macrostructure and its cooling curves. In macrostructure can observe the absence of the three zones of solidification and the presence of large pores because of moisture in the sand. In the sample taken from the metal mold can observe the three zones of solidification: a coquilhada, columnar and equiaxed
Resumo:
The aluminum includes several properties with excellent relation between weight and mechanical resistance. With technological advances, increasingly demand the development of new alloys and other production processes in order to reduce the cost of production and insert these new alloys in broader applications. The process of continuous caster (TRC promoted the unite of the aluminum smelting process with the first stage of rolling, making it most economical through the merger these two phases besides transform the continuous casting process. The AA8xxx series is one of the most versatile aluminum alloys and the most often used in continuous caster process provided a great potential application in the market. In order to further, optimize the process it is necessary to increase awareness of the aluminum solidification phenomena associated with the addition of grain refiner, and control of some aluminum production parameters in the process (production rate, metal temperature, etc.). In this study, AA8011 alloy samples were taken in the raw state obtained by the continuous casting process. The samples were laminated to a thickness of 7mm during the process itself and analyzed at three points along its width by microstructural analysis throughout its thickness, the variation rate of addition of the grain refiner in order to assess the influence of this addition with crystallographic formation and some formation of intermetallic precipitates during the solidification. Through this work, it was possible to improve the knowledge related to the addition of refiner with the monitoring of these production processes
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Pós-graduação em Odontologia - FOA