919 resultados para Signal amplitude


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé françaisLa majorité des organismes vivants sont soumis à l'alternance du jour et de la nuit, conséquence de la rotation de la terre autour de son axe. Ils ont développé un système interne de mesure du temps, appelé horloge circadienne, leur permettant de s'adapter et de synchroniser leur comportement et leur physiologie aux cycles de lumière. Cette dernière est considérée comme étant le signal majeur entraînant l'horloge interne et. par conséquent, les rythmes journaliers d'éveil et de sommeil. Outre sa régulation circadienne, le sommeil est contrôlé par un processus homéostatique qui détermine son besoin. La contribution de ces deux processus dans le fonctionnement cellulaire du cerveau n'a pas encore été investiguée. La mesure de l'amplitude ainsi que de la prévalence des ondes delta de l'EEG (activité delta) constitue un index très fiable du besoin de sommeil. Il a été démontré que cette activité est génétiquement déterminée et associée à un locus de trait quantitatif situé sur le chromosome 13 de la souris.Grâce à des expériences de privation de sommeil et d'analyses de transcriptome du cerveau dans trois souches de souris présentant diverses réponses à la privation de sommeil, nous avons trouvé que Homerla, localisé dans la région d'intérêt du chromosome 13, est le meilleur marqueur du besoin de sommeil. Homerla est impliqué dans la récupération de l'hyperactivité neuronale induite par le glutamate, grâce à son effet tampon sur le calcium intracellulaire. Une fonction fondamentale du sommeil pourrait donc être de protéger le cerveau et de lui permettre de récupérer après une hyperactivité neuronale imposée par une veille prolongée.De plus, nous avons montré que 2032 transcrits sont exprimés rythmiqueraent dans le cerveau de la souris, parmi lesquels seulement 391 le restent après que les animaux aient été privés de sommeil à différents moments au cours des 24 heures. Cette observation montre clairement que la plupart des changements rythmiques au niveau du transcriptome dépendent du sommeil et non de l'horloge circadienne et souligne ainsi l'importance du sommeil dans la physiologie des mammifères.La plupart des expériences concernant les rythmes circadiens ont été réalisées sur des individus isolés en négligeant l'effet du contexte social sur les comportements circadiens. Les espèces sociales, telles que les fourmis, se caractérisent par une division du travail où une répartition des tâches s'effectue entre ses membres. De plus, certaines d'entre elles doivent être pratiquées en continu comme les soins au couvain tandis que d'autres requièrent une activité rythmique comme le fourragement. Ainsi la fourmi est un excellent modèle pour l'étude de 1 influence du contexte social sur les rythmes circadiens.A ces fins, nous avons décidé d'étudier les rythmes circadiens chez une espèce de fourmi Camponotus fellah et de caractériser au niveau moléculaire son horloge circadienne. Nous avons ainsi développé un système vidéo permettant de suivre l'activité locomotrice de tous les individus d'une colonie. Nos résultats montrent que, bien que la plupart des fourmis soient arythmiques à l'intérieur de la colonie, elles développent d'amples rythmes d'activité en isolation. De plus, ces rythmes disparaissent presque aussitôt que la fourmi est réintroduite dans la colonie. Cette rythmicité observée en isolation semble être générée par l'horloge circadienne car elle persiste en condition constante (obscurité totale). Nous avons ensuite regardé si cette apparente arythmie observée dans la colonie résultait d'un effet masquant des interactions sociales sur les rythmes circadiens d'activité. Nos résultats suggèrent que l'horloge interne est fonctionnelle dans la colonie mais que l'expression de ses rythmes au niveau comportemental est inhibée par les interactions sociales. Les analyses moléculaires du statut de l'horloge dans différents contextes sociaux sont actuellement en cours. Le contexte social semble donc un déterminant majeur du comportement circadien chez la fourmi.AbstractAlmost all living organisms on earth are subjected to the alternance of day and night re-sulting from the rotation of the earth around its axis. They have evolved with an internal timing system, termed the circadian clock, enabling them to adapt and synchronize their behavior and physiology to the daily changes in light and related environmental parame¬ters. Light is thought to be the major cue entraining the circadian clock and consequently the rhythms of rest/activity. In addition to its circadian dependent timing, sleep is reg¬ulated by a homeostatic process that determines its need. The contribution of these two processes in the cellular functioning of the brain has not yet been considered. A highly reliable index of the homeostatic process of sleep is the measure of the amplitude and prevalence of the EEG delta waves (delta activity). It has been shown that sleep need, measured by delta activity, is genetically determined and associated with a Quantitative Trait Locus (QTL) located on the mouse chromosome 13. By using sleep deprivation and brain transcriptome profiling in three inbred mouse strains showing different responses to sleep loss, we found that Homerla, localized within this QTL region is the best transcrip¬tional marker of sleep need. Interestingly Homerla is primarily involved in the recovery from glutamate-induced neuronal hyperactivity by its buffering effect on intracellular cal¬cium. A fundamental function of sleep may therefore reside in the protection and recovery of the brain from a neuronal hyperactivity imposed by prolonged wakefulness.Moreover, time course gene expression experiments showed that 2032 brain tran¬scripts present a rhythmic variation, but only 391 of those remain rhythmic when mice are sleep deprived at four time points around the clock. This finding clearly suggests that most changes in gene transcription over the day are sleep-wake dependent rather than clock dependent and underlines the importance of sleep in mammalian physiology.In the second part of this PhD, I was interested in the social influence on circadian behavior. Most experiments done in the circadian field have been performed on isolated individuals and have therefore ignored the effect of the social context on circadian behav-ior. Eusocial insect species such as ants are characterized by a division of labor: colony tasks are distributed among individuals, some of them requiring continuous activity such as nursing or rhythmic ones such as foraging. Thus ants represent a suitable model to study the influence of the social context on the circadian clock and its output rhythms.The aim of this part was to address the effect of social context on circadian rhythms in the ant species Camponotus fellah and to characterize its circadian clock at the molecu¬lar level. We therefore developed a video tracking system to follow the locomotor activity of all individuals in a colony. Our results show that most ants are arrhythmic within the colony, but develop, when subjected to social isolation, strong rhythms of activity that intriguingly disappear when individuals are reintroduced into the colony. The rhythmicity observed in isolated ants seems to be driven by the circadian clock as it persists under constant conditions (complete darkness). We then tested whether the apparent arrhyth- micity in the colony stemmed from a masking effect of social interactions on circadian rhythms. Indeed, we found that circadian clocks of ants in the colony are functional but their expression at the behavioral level is inhibited by social interactions. The molecular assessment of the circadian clock functional state in the different social context is still under investigation. Our results suggest that social context is a major determinant of circadian behavior in ants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 1986, several near-vertical seismic reflection profiles have been recorded in Switzerland in order to map the deep geologic structure of the Alps. One objective of this endeavour has been to determine the geometries of the autochthonous basement and of the external crystalline massifs, important elements for understanding the geodynamics of the Alpine orogeny. The PNR-20 seismic line W1, located in the Rawil depression of the western Swiss Alps, provides important information on this subject. It extends northward from the `'Penninic front'' across the Helvetic nappes to the Prealps. The crystalline massifs do not outcrop along this profile. Thus, the interpretation of `'near-basement'' reflections has to be constrained by down-dip projections of surface geology, `'true amplitude'' processing, rock physical property studies and modelling. 3-D seismic modelling has been used to evaluate the seismic response of two alternative down-dip projection models. To constrain the interpretation in the southern part of the profile, `'true amplitude'' processing has provided information on the strength of the reflections. Density and velocity measurements on core samples collected up-dip from the region of the seismic line have been used to evaluate reflection coefficients of typical lithologic boundaries in the region. The cover-basement contact itself is not a source of strong reflections, but strong reflections arise from within the overlaying metasedimentary cover sequence, allowing the geometry of the top of the basement to be determined on the basis of `'near-basement'' reflections. The front of the external crystalline massifs is shown to extend beneath the Prealps, about 6 km north of the expected position. A 2-D model whose seismic response shows reflection patterns very similar to the observed is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquest projecte es centra principalment en el detector no coherent d’un GPS. Per tal de caracteritzar el procés de detecció d’un receptor, es necessita conèixer l’estadística implicada. Pel cas dels detectors no coherents convencionals, l’estadística de segon ordre intervé plenament. Les prestacions que ens dóna l’estadística de segon ordre, plasmada en la ROC, són prou bons tot i que en diferents situacions poden no ser els millors. Aquest projecte intenta reproduir el procés de detecció mitjançant l’estadística de primer ordre com a alternativa a la ja coneguda i implementada estadística de segon ordre. Per tal d’aconseguir-ho, s’usen expressions basades en el Teorema Central del Límit i de les sèries Edgeworth com a bones aproximacions. Finalment, tant l’estadística convencional com l’estadística proposada són comparades, en termes de la ROC, per tal de determinar quin detector no coherent ofereix millor prestacions en cada situació.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a pigment called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. We will present data showing that hemoroin acts as a proinflammatory danger signal through activation of the Nalp3 inflammasome, causing the release of IL-1β. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibitors of phagocytosis, K+ efflux and NADPH oxidase. In vivo, injection of hemozoin results in acute peritonitis, which is impaired in Nalp3- and IL-1R-deficient mice. Moreover, the pathogenesis of cerebral malaria is reduced in caspase-1-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged. Thus, Plasmodium-generated hemozoin may act as a danger signal resulting in an uncontrolled proinflammatory host response and thereby contributing to the cerebral manifestations seen in malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the influence of signal variability on human and model observers for detection tasks with realistic simulated masses superimposed on real patient mammographic backgrounds and synthesized mammographic backgrounds (clustered lumpy backgrounds, CLB). Results under the signal-known-exactly (SKE) paradigm were compared with signal-known-statistically (SKS) tasks for which the observers did not have prior knowledge of the shape or size of the signal. Human observers' performance did not vary significantly when benign masses were superimposed on real images or on CLB. Uncertainty and variability in signal shape did not degrade human performance significantly compared with the SKE task, while variability in signal size did. Implementation of appropriate internal noise components allowed the fit of model observers to human performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To develop and evaluate a practical method for the quantification of signal-to-noise ratio (SNR) on coronary MR angiograms (MRA) acquired with parallel imaging.Materials and Methods: To quantify the spatially varying noise due to parallel imaging reconstruction, a new method has been implemented incorporating image data acquisition followed by a fast noise scan during which radio-frequency pulses, cardiac triggering and navigator gating are disabled. The performance of this method was evaluated in a phantom study where SNR measurements were compared with those of a reference standard (multiple repetitions). Subsequently, SNR of myocardium and posterior skeletal muscle was determined on in vivo human coronary MRA.Results: In a phantom, the SNR measured using the proposed method deviated less than 10.1% from the reference method for small geometry factors (<= 2). In vivo, the noise scan for a 10 min coronary MRA acquisition was acquired in 30 s. Higher signal and lower SNR, due to spatially varying noise, were found in myocardium compared with posterior skeletal muscle.Conclusion: SNR quantification based on a fast noise scan is a validated and easy-to-use method when applied to three-dimensional coronary MRA obtained with parallel imaging as long as the geometry factor remains low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epithelial to Mesenchymal transition (EMT) in cancer, a process permitting cancer cells to become mobile and metastatic, has a signaling hardwire forged from development. Multiple signaling pathways that regulate carcinogenesis enabling characteristics in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis are also the main players in EMT. These pathways, as almost all cellular processes, are in their turn regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination is the covalent link of target proteins with the small protein ubiquitin and serves as a signal to target protein degradation by the proteasome or to other outcomes such as endocytosis, degradation by the lysosome or specification of cellular localization. This paper reviews signal transduction pathways regulating EMT and being regulated by ubiquitination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria in intact cells maintain low Na(+) levels despite the large electrochemical gradient favoring cation influx into the matrix. In addition, they display individual spontaneous transient depolarizations. The authors report here that individual mitochondria in living astrocytes exhibit spontaneous increases in their Na(+) concentration (Na(mit)(+) spiking), as measured using the mitochondrial probe CoroNa Red. In a field of view with approximately 30 astrocytes, up to 1,400 transients per minute were typically detected under resting conditions. Na(mit)(+) spiking was also observed in neurons, but was scarce in two nonneural cell types tested. Astrocytic Na(mit)(+) spikes averaged 12.2 +/- 0.8 s in duration and 35.5 +/- 3.2 mM in amplitude and coincided with brief mitochondrial depolarizations; they were impaired by mitochondrial depolarization and ruthenium red pointing to the involvement of a cation uniporter. Na(mit)(+) spiking activity was significantly inhibited by mitochondrial Na(+)/H(+) exchanger inhibition and sensitive to cellular pH and Na(+) concentration. Ca(2+) played a permissive role on Na(mit)(+) spiking activity. Finally, the authors present evidence suggesting that Na(mit)(+) spiking frequency was correlated with cellular ATP levels. This study shows that, under physiological conditions, individual mitochondria in living astrocytes exhibit fast Na(+) exchange across their inner membrane, which reveals a new form of highly dynamic and localized functional regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:Amplitude-integrated electroencephalogram (aEEG) is increasingly used for neuromonitoring in preterms. We aimed to quantify the effects of gestational age (GA), postnatal age (PNA), and other perinatal factors on the development of aEEG early after birth in very preterm newborns with normal cerebral ultrasounds.Methods:Continuous aEEG was prospectively performed in 96 newborns (mean GA: 29.5 (range: 24.4-31.9) wk, birth weight 1,260 (580-2,120) g) during the first 96 h of life. aEEG tracings were qualitatively (maturity scores) and quantitatively (amplitudes) evaluated using preestablished criteria.Results:A significant increase in all aEEG measures was observed between day 1 and day 4 and for increasing GA (P < 0.001). The effect of PNA on aEEG development was 6.4- to 11.3-fold higher than that of GA. In multivariate regression, GA and PNA were associated with increased qualitative and quantitative aEEG measures, whereas small-for-GA status was independently associated with increased maximum aEEG amplitude (P = 0.003). Morphine administration negatively affected all aEEG measures (P < .05), and caffeine administration negatively affected qualitative aEEG measures (P = 0.02).Conclusion:During the first few days after birth, aEEG activity in very preterm infants significantly develops and is strongly subjected to the effect of PNA. Perinatal factors may alter the early aEEG tracing and interfere with its interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many gamma-proteobacteria, the conserved GacS/GacA (BarA/UvrY) two-component system positively controls the expression of one to five genes specifying small RNAs (sRNAs) that are characterized by repeated unpaired GGA motifs but otherwise appear to belong to several independent families. The GGA motifs are essential for binding small, dimeric RNA-binding proteins of a single conserved family designated RsmA (CsrA). These proteins, which also occur in bacterial species outside the gamma-proteobacteria, act as translational repressors of certain mRNAs when these contain an RsmA/CsrA binding site at or near the Shine-Dalgarno sequence plus additional binding sites located in the 5' untranslated leader mRNA. Recent structural data have established that the RsmA-like protein RsmE of Pseudomonas fluorescens makes specific contacts with an RNA consensus sequence 5'-(A)/(U)CANGGANG(U)/(A)-3' (where N is any nucleotide). Interaction with an RsmA/CsrA protein promotes the formation of a short stem supporting an ANGGAN loop. This conformation hinders access of 30S ribosomal subunits and hence translation initiation. The output of the Gac/Rsm cascade varies widely in different bacterial species and typically involves management of carbon storage and expression of virulence or biocontrol factors. Unidentified signal molecules co-ordinate the activity of the Gac/Rsm cascade in a cell population density-dependent manner.