384 resultados para Shrubs.
Resumo:
Thermokarst lakes are a widespread feature of the Arctic tundra, in which highly dynamic processes are closely connected with current and past climate changes. We investigated late Quaternary sediment dynamics, basin and shoreline evolution, and environmental interrelations of Lake El'gene-Kyuele in the NE Siberian Arctic (latitude 71°17'N, longitude 125°34'E). The water-body displays thaw-lake characteristics cutting into both Pleistocene Ice Complex and Holocene alas sediments. Our methods are based on grain size distribution, mineralogical composition, TOC/N ratio, stable carbon isotopes and the analysis of plant macrofossils from a 3.5-m sediment profile at the modern eastern lake shore. Our results show two main sources for sediments in the lake basin: terrigenous diamicton supplied from thermokarst slopes and the lake shore, and lacustrine detritus that has mainly settled in the deep lake basin. The lake and its adjacent thermokarst basin rapidly expanded during the early Holocene. This climatically warmer than today period was characterized by forest or forest tundra vegetation composed of larches, birch trees and shrubs. Woodlands of both the HTM and the Late Pleistocene were affected by fire, which potentially triggered the initiation of thermokarst processes resulting later in lake formation and expansion. The maximum lake depth at the study site and the lowest limnic bioproductivity occurred during the longest time interval of ~7 ka starting in the Holocene Thermal Maximum and lasting throughout the progressively cooler Neoglacial, whereas partial drainage and an extensive shift of the lake shoreline occurred ~0.9 cal. ka BP. Correspondingly, this study discusses different climatic and environmental drivers for the dynamics of a thermokarst basin.
Resumo:
We analyzed the abundance of Scots pine regeneration in a 257 ha wildfire in an inner-alpine forest. We sampled regeneration, percent soil cover by classes, physical and chemical properties of topsoils (A horizon, 0-5 cm) under four fire severity levels (unburned, moderate, moderate/high, high severity). 5 plots per severity level, circular (R= 3m). Analysis methods for soil properties as described in the paper.
Resumo:
Phytoliths (siliceous plant microfossils) have been recovered from Cenozoic sediments (c. 34 to 17 Ma) in the CRP-2/2A and CRP-3 drillholes cored off Cape Roberts, Victoria Land Basin, Antarctica. The phytolith assemblages are sparse, but well-preserved and dominated by spherical forms similar to those of modern trees or shrubs. Rare phytoliths comparable to modern grass forms are also present. However, due to the paucity of phytolith data, any interpretations made are necessarily tentative. The assemblages of CRP-2/2A and the upper c. 250 m of CRP-3 are interpreted as representing a predominantly woody vegetation, including Nothofagus and Libocedrus with local areas of grass in the more exposed locations. A cool climate is interpreted to have prevailed throughout both cores. However, beneath c. 250 metres below sea floor in CRP-3, the dominant woody vegetation is supplemented by pockets of Palmae, ?Proteaceae and 'warm' climate grasses. This association represents vegetation growth in sheltered, moist sites - possibly north-facing mid-slopes or the coastal fringe. It may also represent remnant vegetation that grew in moist, temperate conditions during the Middle to Late Eocene, previously interpreted from the Southern McMurdo Sound erratics and lower part of the CIROS-1 drillhole. The phytolith analysis compares well to the terrestrial palynomorph record from both cores and provides additional independent taxonomic and climatic interpretations.
Resumo:
We provide new information on changes in tundra plant sexual reproduction in response to long-term (12 years) experimental warming in the High Arctic. Open-top chambers (OTCs) were used to increase growing season temperatures by 1-2 °C across a range of vascular plant communities. The warming enhanced reproductive effort and success in most species; shrubs and graminoids appeared to be more responsive than forbs. We found that the measured effects of warming on sexual reproduction were more consistently positive and to a greater degree in polar oasis compared with polar semidesert vascular plant communities. Our findings support predictions that long-term warming in the High Arctic will likely enhance sexual reproduction in tundra plants, which could lead to an increase in plant cover. Greater abundance of vegetation has implications for primary consumers - via increased forage availability, and the global carbon budget - as a function of changes in permafrost and vegetation acting as a carbon sink. Enhanced sexual reproduction in Arctic vascular plants may lead to increased genetic variability of offspring, and consequently improved chances of survival in a changing environment. Our findings also indicate that with future warming, polar oases may play an important role as a seed source to the surrounding polar desert landscape.
Resumo:
Palynological investigation of a 410 cm long core section from Tso Kar (33°10'N, 78°E, 4527 m a.s.l.), an alpine lake situated in the arid Ladakh area of NW India at the limit of the present-day Indian summer monsoon, was performed in order to reconstruct post-glacial regional vegetation and climate dynamics. The area was covered with alpine desert vegetation from ca. 15.2 to 14 kyr BP (1 kyr=1000 cal. years), reflecting dry and cold conditions. High influx values of long-distance transported Pinus sylvestris type pollen suggest prevailing air flow from the west and northwest. The spread of alpine meadow communities and local aquatic vegetation is a weak sign of climate amelioration after ca. 14 kyr BP. Pollen data (e.g. influx values of Pinus roxburghii type and Quercus) suggest that this was due to a strengthening of the summer monsoon and the reduced activity of westerly winds. The further spread of Artemisia and species-rich meadows occurred in response to improved moisture conditions between ca. 12.9 and 12.5 kyr BP. The subsequent change towards drier desert-steppe vegetation likely indicates more frequent westerly disturbances and associated snowfalls, which favoured the persistence of alpine meadows on edaphically moist sites. The spread of Chenopodiaceae-dominated vegetation associated with an extremely weak monsoon occurred at ca. 12.2-11.8 kyr BP during the Younger Dryas interstadial. A major increase in humidity is inferred from the development of Artemisia-dominated steppe and wet alpine meadows with Gentianaceae after the late glacial/early Holocene transition in response to the strengthening of the summer monsoon. Monsoonal influence reached maximum activity in the Tso Kar region between ca. 10.9 and 9.2 kyr BP. The subsequent development of the alpine meadow, steppe and desert-steppe vegetation points to a moderate reduction in the moisture supply, which can be linked to the weaker summer monsoon and the accompanying enhancement of the winter westerly flow from ca. 9.2 to 4.8 kyr BP. The highest water levels of Tso Kar around 8 kyr BP probably reflect combined effect of both monsoonal and westerly influence in the region. An abrupt shift towards aridity in the Tso Kar region occurred after ca. 4.8 kyr BP, as evidenced by an expansion of Chenopodiaceae-dominated desert-steppe. Low pollen influx values registered ca. 2.8-1.3 kyr BP suggest scarce vegetation cover and unfavourable growing conditions likely associated with a further weakening of the Indian Monsoon.
Resumo:
The formation of Lake Melkoe (64°51'30''N, 175°14'E, altitude 36 m), one of the largest lakes of the Anadyr Lowland, is related to the moraine left by the Tyellakh Glacier, which originated on the Pekul'nei Ridge. The lake (6 km long and 4.4 km wide) extends in the northwestern direction. The Kholmy Priozernye moraine (16 km long along the arc, 1.5 km wide, and 92-103 masl) surrounds the lake in the west and south. The lake coasts are covered by sand with pebbles and shingle. The flat lake bottom dips toward its central part to a depth of 160 cm. In distinction from many other lakes of the Anadyr Lowland, the thickness of the upper layer of water-saturated sediments overlying compact aleurites in Lake Melkoe is only 5-6 cm. Such a peculiarity of the bottom is explained by the large size of the lake, low sedimentation rates, and frequent storms caused by strong winds. Regional and local vegetation corresponds to a mosaic tundra represented by high shrubs Pinus pumila, Duschekia fruticosa , and hummocky Betula - Ericales - Eriophorum communities. Pinus pumila and Alnus form thickets on the banks of the Anadyr River, coasts of lakes, and moraine slopes.
Resumo:
Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The Exploitation Ecosystem Hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.
Resumo:
Recent Pan-Arctic shrub expansion has been interpreted as a response to a warmer climate. However, herbivores can also influence the abundance of shrubs in arctic ecosystems. We addressed these alternative explanations by following the changes in plant community composition during the last 10 years in permanent plots inside and outside exclosures with different mesh sizes that exclude either only reindeer or all mammalian herbivores including voles and lemmings. The exclosures were replicated at three forest and tundra sites at four different locations along a climatic gradient (oceanic to continental) in northern Fennoscandia. Since the last 10 years have been exceptionally warm, we could study how warming has influenced the vegetation in different grazing treatments. Our results show that the abundance of the dominant shrub, Betula nana, has increased during the last decade, but that the increase was more pronounced when herbivores were excluded. Reindeer have the largest effect on shrubs in tundra, while voles and lemmings have a larger effect in the forest. The positive relationship between annual mean temperature and shrub growth in the absence of herbivores and the lack of relationships in grazed controls is another indication that shrub abundance is controlled by an interaction between herbivores and climate. In addition to their effects on taller shrubs (> 0.3 m), reindeer reduced the abundance of lichens, whereas microtine rodents reduced the abundance of dwarf shrubs (< 0.3 m) and mosses. In contrast to short-term responses, competitive interactions between dwarf shrubs and lichens were evident in the long term. These results show that herbivores have to be considered in order to understand how a changing climate will influence tundra ecosystems.
Resumo:
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.
Resumo:
We report on a revisit in 2009 to sites where vegetation was recorded in 1967 and 1970 on Disko Island, West Greenland. Re-sampling of the same clones of the grass Phleum alpinum after 39 years showed complete stability in biometrics but dramatic earlier onset of various phenological stages that were not related to changes in population density. In a fell-field community, there was a net species loss, but in a herb-slope community, species losses balanced those that were gained. The type of species establishing and increasing in frequency and/or cover abundance at the fell-field site, particularly prostrate dwarf shrubs, indicates a possible start of a shift towards a heath, rather than a fell-field community. At the herb-slope site, those species that established or increased markedly in frequency and/or cover abundance indicate a change to drier conditions. This is confirmed both by the decrease in abundance of Alchemilla glomerulans and Epilobium hornemanii, and the drying of a nearby pond. The causes of these changes are unknown, although mean annual temperature has risen since 1984.
Resumo:
Extreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short-lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2-10 °C for 2-14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week-long extreme winter warming events - using infrared heating lamps and soil warming cables - for 3 consecutive years in a sub-Arctic heathland dominated by the dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis-idaea (both evergreen) and Vaccinium myrtillus (deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week for E. hermaphroditum and V. myrtillus, and berry production reduced by 11-75% and 52-95% for E. hermaphroditum and V. myrtillus, respectively. Greater shoot mortality occurred in E. hermaphroditum (up to 52%), V. vitis-idaea (51%), and V. myrtillus (80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long-term summer warming simulations and the 'greening' seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.
Resumo:
1. Dominant plant functional types (PFTs) are expected to be primary determinants of communities of other above- and below-ground organisms. Here, we report the effects of the experimental removal of different PFTs on arbuscular mycorrhizal fungi (AMF) communities in a shrubland ecosystem in central Argentina. 2. On the basis of the biomass-ratio hypothesis and plant resource use strategy theory, we expected the effect of removal of PFTs on AMF colonization and spores to be proportional to the biomass removed and to be stronger when more conservative PFTs were removed. The treatments applied were: undisturbed control (no plant removed), disturbed control (mechanical disturbance), no shrub (removal of deciduous shrubs), no perennial forb (removal of perennial forbs), no graminoid (removal of graminoids) and no annual forb (removal of annual forbs). AMF colonization was assessed after 5,17 and 29 months. Total density of AMF spores, richness and evenness of morpho-taxa, and AMF functional groups were quantified after 5,17,29,36 and 39 months. 3. Five months after the initial removal we found a significant reduction in total AMF colonization in all plots subjected to PFT removals and in the disturbed control plots, as compared with the undisturbed controls. This effect disappeared afterwards and no subsequent effect on total colonization and colonization by arbuscules was observed. In contrast, a significant increase in colonization by vesicles was observed in months 17 and 29, mainly in no graminoid plots. In general, treatments did not significantly affect AMF spores in the soil. On the other hand, no annual forb promoted transient (12-18 months) higher ammonia availability, and no shrub promoted lower nitrate availability in the longer term (24-28 months). 4. Synthesis. Our experiment, the first to investigate the effects of the removal of different PFTs on AMF communities in natural ecosystems, indicates that AMF communities are resilient to changes in the soil and in the functional composition of vegetation. Furthermore, it does not provide consistent evidence in support of the biomass-ratio hypothesis or differential trait-based direct or indirect effects of different PFTs on AMF in this particular system.
Resumo:
High-latitude ecosystems play an important role in the global carbon cycle and in regulating the climate system and are presently undergoing rapid environmental change. Accurate land cover data sets are required to both document these changes as well as to provide land-surface information for benchmarking and initializing Earth system models. Earth system models also require specific land cover classification systems based on plant functional types (PFTs), rather than species or ecosystems, and so post-processing of existing land cover data is often required. This study compares over Siberia, multiple land cover data sets against one another and with auxiliary data to identify key uncertainties that contribute to variability in PFT classifications that would introduce errors in Earth system modeling. Land cover classification systems from GLC 2000, GlobCover 2005 and 2009, and MODIS collections 5 and 5.1 are first aggregated to a common legend, and then compared to high-resolution land cover classification systems, vegetation continuous fields (MODIS VCFs) and satellite-derived tree heights (to discriminate against sparse, shrub, and forest vegetation). The GlobCover data set, with a lower threshold for tree cover and taller tree heights and a better spatial resolution, tends to have better distributions of tree cover compared to high-resolution data. It has therefore been chosen to build new PFT maps for the ORCHIDEE land surface model at 1 km scale. Compared to the original PFT data set, the new PFT maps based on GlobCover 2005 and an updated cross-walking approach mainly differ in the characterization of forests and degree of tree cover. The partition of grasslands and bare soils now appears more realistic compared with ground truth data. This new vegetation map provides a framework for further development of new PFTs in the ORCHIDEE model like shrubs, lichens and mosses, to represent the water and carbon cycles in northern latitudes better. Updated land cover data sets are critical for improving and maintaining the relevance of Earth system models for assessing climate and human impacts on biogeochemistry and biophysics.
Resumo:
The paper presents first results of a pan-boreal scale land cover harmonization and classification. A methodology is presented that combines global and regional vegetation datasets to extract percentage cover information for different vegetation physiognomy and barren for the pan-arctic region within the ESA Data User Element Permafrost. Based on the legend description of each land cover product the datasets are harmonized into four LCCS (Land Cover Classification System) classifiers which are linked to the MODIS Vegetation Continuous Field (VCF) product. Harmonized land cover and Vegetation Continuous Fields products are combined to derive a best estimate of percentage cover information for trees, shrubs, herbaceous and barren areas for Russia. Future work will concentrate on the expansion of the developed methodology to the pan-arctic scale. Since the vegetation builds an isolation layer, which protects the permafrost from heat and cold temperatures, a degradation of this layer due to fire strongly influences the frozen conditions in the soil. Fire is an important disturbance factor which affects vast processes and dynamics in ecosystems (e.g. biomass, biodiversity, hydrology, etc.). Especially in North Eurasia the fire occupancy has dramatically increased in the last 50 years and has doubled in the 1990s with respect to the last five decades. A comparison of global and regional fire products has shown discrepancies between the amounts of burn scars detected by different algorithms and satellite data.
Resumo:
Uncertainty information for global leaf area index (LAI) products is important for global modeling studies but usually difficult to systematically obtain at a global scale. Here, we present a new method that cross-validates existing global LAI products and produces consistent uncertainty information. The method is based on a triple collocation error model (TCEM) that assumes errors among LAI products are not correlated. Global monthly absolute and relative uncertainties, in 0.05° spatial resolutions, were generated for MODIS, CYCLOPES, and GLOBCARBON LAI products, with reasonable agreement in terms of spatial patterns and biome types. CYCLOPES shows the lowest absolute and relative uncertainties, followed by GLOBCARBON and MODIS. Grasses, crops, shrubs, and savannas usually have lower uncertainties than forests in association with the relatively larger forest LAI. With their densely vegetated canopies, tropical regions exhibit the highest absolute uncertainties but the lowest relative uncertainties, the latter of which tend to increase with higher latitudes. The estimated uncertainties of CYCLOPES generally meet the quality requirements (± 0.5) proposed by the Global Climate Observing System (GCOS), whereas for MODIS and GLOBCARBON only non-forest biome types have met the requirement. Nevertheless, none of the products seems to be within a relative uncertainty requirements of 20%. Further independent validation and comparative studies are expected to provide a fair assessment of uncertainties derived from TCEM. Overall, the proposed TCEM is straightforward and could be automated for the systematic processing of real time remote sensing observations to provide theoretical uncertainty information for a wider range of land products.