948 resultados para Shelf-edge barrier reef
Resumo:
The off-site transport of agricultural chemicals, such as herbicides, into freshwater and marine ecosystems is a world-wide concern. The adoption of farm management practices that minimise herbicide transport in rainfall-runoff is a priority for the Australian sugarcane industry, particularly in the coastal catchments draining into the World Heritage listed Great Barrier Reef (GBR) lagoon. In this study, residual herbicide runoff and infiltration were measured using a rainfall simulator in a replicated trial on a brown Chromosol with 90–100% cane trash blanket cover in the Mackay Whitsunday region, Queensland. Management treatments included conventional 1.5 m spaced sugarcane beds with a single row of sugarcane (CONV) and 2 m spaced, controlled traffic sugarcane beds with dual sugarcane rows (0.8 m apart) (2mCT). The aim was to simulate the first rainfall event after the application of the photosynthesis inhibiting (PSII) herbicides ametryn, atrazine, diuron and hexazinone, by broadcast (100% coverage, on bed and furrow) and banding (50–60% coverage, on bed only) methods. These events included heavy rainfall 1 day after herbicide application, considered a worst case scenario, or rainfall 21 days after application. The 2mCT rows had significantly (P < 0.05) less runoff (38%) and lower peak runoff rates (43%) than CONV rows for a rainfall average of 93 mm at 100 mm h−1 (1:20 yr Average Return Interval). Additionally, final infiltration rates were higher in 2mCT rows than CONV rows, with 72 and 52 mm h−1 respectively. This resulted in load reductions of 60, 55, 47, and 48% for ametryn, atrazine, diuron and hexazinone from 2mCT rows, respectively. Herbicide losses in runoff were also reduced by 32–42% when applications were banded rather than broadcast. When rainfall was experienced 1 day after application, a large percentage of herbicides were washed off the cane trash. However, by day 21, concentrations of herbicide residues on cane trash were lower and more resistant to washoff, resulting in lower losses in runoff. Consequently, ametryn and atrazine event mean concentrations in runoff were approximately 8 fold lower at day 21 compared with day 1, whilst diuron and hexazinone were only 1.6–1.9 fold lower, suggesting longer persistence of these chemicals. Runoff collected at the end of the paddock in natural rainfall events indicated consistent though smaller treatment differences to the rainfall simulation study. Overall, it was the combination of early application, banding and controlled traffic that was most effective in reducing herbicide losses in runoff. Crown copyright © 2012
Resumo:
In multi-species fisheries managed under ITQs, the existence of joint production may lead to complex catch-quota balancing issues. Previous modelling and experimental research suggest that, in such fisheries, some fishers may benefit from the ability to trade packages of fishing quotas, rather than fulfil their quota needs by simultaneously bidding on separate single-species quota markets. This note presents evidence of naturally occurring package trades in a real fishery. Based on this evidence, we suggest that further empirical and modelling research is required on the potential and limitations of package quota trading in mixed fisheries managed with ITQs. © 2014.
Resumo:
The major banana production areas in Australia are particularly sensitive to environments due to their close proximity to areas of World Heritage rainforest and the Great Barrier Reef catchment. Management of soil quality, nutrients and pesticides are vital to maintaining the integrity of these sensitive areas. Studies on cropping systems have suggested that integrating organic matter into ground cover management would improve the quality of soil under banana cultivation. In this study, an alternative management practice for bananas, which addresses the management of organic matter and fertiliser application, was assessed and compared to the conventional practice currently employed in the banana industry. Several chemical, physical and biological soil parameters were measured including: pH, electrical conductivity, water stable aggregates, bulk density, water filled pore space, porosity, water content, fluorescein diacetate hydrolyis (FDA) and beta-glucosidase activity. The alternative management practice did not have a significant impact of the production and growth of bananas but overall improved the quality of the soil. Although some differences were observed, the chemical and physical soil characteristics did not differ dramatically between the two management systems. The addition of organic matter resulted in the soil under alternative practice having higher FDA and beta-glucosidase levels, indicating higher microbial activity. The integration of organic matter into the management of bananas resulted in positive benefits on soil properties under bananas, however, methods of maintaining organic matter in the soil need to be further researched.
Resumo:
Common coral trout Plectropomus leopardus is an iconic fish of the Great Barrier Reef (GBR) and is the most important fish for the commercial fishery there. Most of the catch is exported live to Asia. This stock assessment was undertaken in response to falls in catch sizes and catch rates in recent years, in order to gauge the status of the stock. It is the first stock assessment ever conducted of coral trout on the GBR, and brings together a multitude of different data sources for the first time. The GBR is very large and was divided into a regional structure based on the Bioregions defined by expert committees appointed by the Great Barrier Reef Marine Park Authority (GBRMPA) as part of the 2004 rezoning of the GBR. The regional structure consists of six Regions, from the Far Northern Region in the north to the Swains and Capricorn–Bunker Regions in the south. Regions also closely follow the boundaries between Bioregions. Two of the northern Regions are split into Subregions on the basis of potential changes in fishing intensity between the Subregions; there are nine Subregions altogether, which include four Regions that are not split. Bioregions are split into Subbioregions along the Subregion boundaries. Finally, each Subbioregion is split into a “blue” population which is open to fishing and a “green” population which is closed to fishing. The fishery is unusual in that catch rates as an indicator of abundance of coral trout are heavily influenced by tropical cyclones. After a major cyclone, catch rates fall for two to three years, and rebound after that. This effect is well correlated with the times of occurrence of cyclones, and usually occurs in the same month that the cyclone strikes. However, statistical analyses correlating catch rates with cyclone wind energy did not provide significantly different catch rate trends. Alternative indicators of cyclone strength may explain more of the catch rate decline, and future work should investigate this. Another feature of catch rates is the phenomenon of social learning in coral trout populations, whereby when a population of coral trout is fished, individuals quickly learn not to take bait. Then the catch rate falls sharply even when the population size is still high. The social learning may take place by fish directly observing their fellows being hooked, or perhaps heeding a chemo-sensory cue emitted by fish that are hooked. As part of the assessment, analysis of data from replenishment closures of Boult Reef in the Capricorn–Bunker Region (closed 1983–86) and Bramble Reef in the Townsville Subregion (closed 1992–95) estimated a strong social learning effect. A major data source for the stock assessment was the large collection of underwater visual survey (UVS) data collected by divers who counted the coral trout that they sighted. This allowed estimation of the density of coral trout in the different Bioregions (expressed as a number of fish per hectare). Combined with mapping data of all the 3000 or so reefs making up the GBR, the UVS results provided direct estimates of the population size in each Subbioregion. A regional population dynamic model was developed to account for the intricacies of coral trout population dynamics and catch rates. Because the statistical analysis of catch rates did not attribute much of the decline to tropical cyclones, (and thereby implied “real” declines in biomass), and because in contrast the UVS data indicate relatively stable population sizes, model outputs were unduly influenced by the unlikely hypothesis that falling catch rates are real. The alternative hypothesis that UVS data are closer to the mark and declining catch rates are an artefact of spurious (e.g., cyclone impact) effects is much more probable. Judging by the population size estimates provided by the UVS data, there is no biological problem with the status of coral trout stocks. The estimate of the total number of Plectropomus leopardus on blue zones on the GBR in the mid-1980s (the time of the major UVS series) was 5.34 million legal-sized fish, or about 8400 t exploitable biomass, with an 2 additional 3350 t in green zones (using the current zoning which was introduced on 1 July 2004). For the offshore regions favoured by commercial fishers, the figure was about 4.90 million legal-sized fish in blue zones, or about 7700 t exploitable biomass. There is, however, an economic problem, as indicated by relatively low catch rates and anecdotal information provided by commercial fishers. The costs of fishing the GBR by hook and line (the only method compatible with the GBR’s high conservation status) are high, and commercial fishers are unable to operate profitably when catch rates are depressed (e.g., from a tropical cyclone). The economic problem is compounded by the effect of social learning in coral trout, whereby catch rates fall rapidly if fishers keep returning to the same fishing locations. In response, commercial fishers tend to spread out over the GBR, including the Far Northern and Swains Regions which are far from port and incur higher travel costs. The economic problem provides some logic to a reduction in the TACC. Such a reduction during good times, such as when the fishery is rebounding after a major tropical cyclone, could provide a net benefit to the fishery, as it would provide a margin of stock safety and make the fishery more economically robust by providing higher catch rates during subsequent periods of depressed catches. During hard times when catch rates are low (e.g., shortly after a major tropical cyclone), a change to the TACC would have little effect as even a reduced TACC would not come close to being filled. Quota adjustments based on catch rates should take account of long-term trends in order to mitigate variability and cyclone effects in data.
Resumo:
This guide provides information on how to match nutrient rate to crop needs by varying application rates and timing between blocks, guided by soil tests, crop class, cane variety, soil type, block history, soil conditioners and yield expectations.
Resumo:
Stakeholder engagement is important for successful management of natural resources, both to make effective decisions and to obtain support. However, in the context of coastal management, questions remain unanswered on how to effectively link decisions made at the catchment level with objectives for marine biodiversity and fisheries productivity. Moreover, there is much uncertainty on how to best elicit community input in a rigorous manner that supports management decisions. A decision support process is described that uses the adaptive management loop as its basis to elicit management objectives, priorities and management options using two case studies in the Great Barrier Reef, Australia. The approach described is then generalised for international interest. A hierarchical engagement model of local stakeholders, regional and senior managers is used. The result is a semi-quantitative generic elicitation framework that ultimately provides a prioritised list of management options in the context of clearly articulated management objectives that has widespread application for coastal communities worldwide. The case studies show that demand for local input and regional management is high, but local influences affect the relative success of both engagement processes and uptake by managers. Differences between case study outcomes highlight the importance of discussing objectives prior to suggesting management actions, and avoiding or minimising conflicts at the early stages of the process. Strong contributors to success are a) the provision of local information to the community group, and b) the early inclusion of senior managers and influencers in the group to ensure the intellectual and time investment is not compromised at the final stages of the process. The project has uncovered a conundrum in the significant gap between the way managers perceive their management actions and outcomes, and community's perception of the effectiveness (and wisdom) of these same management actions.
Resumo:
We report for the first time the ingestion of microplastics by scleractinian corals, and the presence of microplastics in coral reef waters adjacent to inshore reefs on Australia’s Great Barrier Reef (GRE, 18°31′S 146°23′E). Analysis of samples from sub-surface plankton tows conducted in close proximity to inshore reefs on the central GBR revealed microplastics, similar to those used in marine paints and fishing floats, were present in low concentrations at all water sampling locations. Experimental feeding trials revealed that corals mistake microplastics for prey and can consume up to ~50 μg plastic cm−2 h−1, rates similar to their consumption of plankton and Artemia nauplii in experimental feeding assays. Ingested microplastics were found wrapped in mesenterial tissue within the coral gut cavity, suggesting that ingestion of high concentrations of microplastic debris could potentially impair the health of corals.
Resumo:
Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past-a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600 years. The recurrence period of earthquakes may range up to 1,000 years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.
Resumo:
The Scientific Forum on the Gulf of Mexico: The Islands in the Stream Concept took place in January 2008 in Sarasota, Florida. The purpose of the meeting was to bring together scientists and managers from around the Gulf of Mexico to discuss a range of topics on our knowledge of the Gulf of Mexico, from its geology to larger-scale connectivity to the Caribbean region, and their applications to the concept of a more integrated approach to area-based management. The forum included six panels of invited experts who spoke on the oceanographic and biological features in the Gulf of Mexico, including connections with Mexico and the Mesoamerican barrier reef system, and the legal and regulatory structure currently in place. The charge to the group was to share information, identify gaps in our knowledge, identify additional potential areas for protection, and discuss available science about connectivity and the potential value of establishing a marine protected area network in the Gulf of Mexico. (PDF has 108 pages.)
Resumo:
Arrowtooth flounder (Atheresthes stomias) has the highest biomass of any groundfish species in the Gulf of Alaska, is a voracious predator of age 1 walleye pollock (Theragra chalcogramma), and is a major component in the diet of Steller sea lions (Eumetopias jubatus). Owing to its ecological importance in the Gulf of Alaska and the limited information available on its reproduction, interest has intensified in describing its spawning and early life history. A study was undertaken in late January–February 2001–2003 in the Gulf of Alaska to obtain information on adult spawning location, depth distribution, and sexual maturity, and to obtain fertilized eggs for laboratory studies. Adults were found 200–600 m deep east of Kodiak Island over the outer continental shelf and upper slope, and southwest along the shelf break to the Shumagin Islands. Most ripe females (oocytes extruded with light pressure) were found at 400 m and most ripe males (milt extruded with light pressure) were found at depths ≥450 m. Eggs were fertilized and incubated in the laboratory at 3.0°, 4.5°, and 6.0°C. Eggs were reared to hatching, but larvae did not survive long enough to complete yolk absorption and develop pigment. Eggs were staged according to morphological hallmarks and incubation data were used to produce a stage duration table and a regression model to estimate egg age based on water temperature and developmental stage. Arrowtooth flounder eggs (1.58–1.98 mm in diameter) were collected in ichthyoplankton surveys along the continental shelf edge, primarily at depths ≥400 m. Early-stage eggs were found in tows that sampled to depths of ≥450 m. Larvae, which hatch between 3.9 and 4.8 mm standard length, increased in abundance with depth. Observations on arrowtooth flounder eggs and early-stage larvae were used to complete the description of the published partial developmental series.(PDF file contains 34 pages.)
Resumo:
Assateague Island is an offshore bar comprising the south-eastern coast of Maryland and the northeastern coast of Virgina. It is part of the system of discontinuous barrier reefs or bars which occupy most of the Atlantic shoreline from Florida to Massachusetts. These are unstable bars, continuously influenced by storm winds and tides which provide a distinct and rigorous habitat for the vegetation there. General floras of the Delmarva Peninusla do not mention Assateague Island specifically. The objective is to prepare a catalog of the vascular plants of Assateague Island and to describe the communities in which they are found, in the hope it will add to the knowledge of barrier reef vegetation.
Resumo:
Little is known about the seasonality and distribution of grouper larvae (Serranidae: Epinephelini) in the Gulf of Mexico and Atlantic Ocean off the coast of the southeast United States. Grouper larvae were collected from a transect across the Straits of Florida in 2003 and 2004 and during the Southeast Area Monitoring and Assessment Program spring and fall surveys from 1982 through 2005. Analysis of these larval data provided information on location and timing of spawning, larval distribution patterns, and interannual occurrence for a group of species not easily studied as adults. Our analyses indicated that shelf-edge habitat is important for spawning of many species of grouper—some species for which data were not previously available. Spawning for some species may occur year-round, but two peak seasons are evident: late winter and late summer through early fall. Interannual variability in the use of three important subregions by species or groups of species was partially explained by environmental factors (surface temperature, surface salinity, and water depth). A shift in species dominance over the last three decades from spring-spawned species (most of the commercial species) to fall-spawned species also was documented. The results of these analyses expand our understanding of the basic distribution and spawning patterns of northwest Atlantic grouper species and indicate a need for further examination of the changing population structure of individual species and species dominance in the region.
Resumo:
We examined the potential for water chemistry to affect the width of daily increments in reef fish otoliths using both mensurative and manipulative methods. We found significant differences in the widths of increments in otoliths of the neon damselfish (Pomacentrus coelestis) collected in different habitats at One Tree Island on the Great Barrier Reef. We then used manipulative experiments to determine if natural water masses (ocean water vs. lagoon plume) could produce different incremental widths in otoliths in the absence of potentially confounding factors. Fish exposed to ocean water had significantly wider otolith increments for two of the three experiments. Elemental analyses indicated that Ba/Ca ratios were significantly correlated with increment widths for two of the three experiments and Sr/Ca ratios did not correlate with increment width for any experimental period. Variation in crystal-lattice orientation did not explain differences in increment width between treatments. Differences in water chemistry can affect increment widths in otoliths of reef fishes, potentially confounding patterns previously attributed to growth rate or condition alone.
Resumo:
Pelagic pair trawling for tuna, Thunnus spp., and swordfish, Xiphias gladius, was introduced in U.S. Northwest Atlantic waters in 1991. During autumn (October-November) of 1992 under the authority oft he Federal Atlantic Swordfish Regulations, the National Marine Fisheries Service placed observers aboard pelagic pair trawl vessels to document the catch, bycatch, discard, and gear used in this new fishery. The fishery is conducted primarily at night along shelf-edge waters from June to November. In late 1991, revised regulations restricted swordfish to bycatch in this fishery resulting in pelagic pair trawl vessels targeting tuna throughout 1992. Analyses of 1992 data indicate that albacore, T. alalunga, was the predominant species caught, although yellowfin tuna, T. albaeares, and bigeye tuna, T. obesus, were the preferred target species. Bycatch also included swordfish, large sharks, pelagic rays and other pelagic fishes, other tunas, and marine mammals.