976 resultados para Sewage Disposal
Resumo:
O lodo de esgoto possui alto teor de matéria orgânica porém, também estão presentes diferentes poluentes e patógenos. Desta forma, neste trabalho foi extraído ácido húmico (AH) o qual é um composto resultante do fracionamento de substâncias húmicas que compreendem um grupo de compostos de carbono gerados na decomposição de resíduos orgânicos que sofrem ressíntese formando o húmus. O ácido húmico promove diversos benefícios nos vegetais, como crescimento, elongação celular, tolerância a estresses e aumento da permeabilidade da membrana plasmática. Com base nestas características, o presente trabalho teve como objetivo avaliar os efeitos citogenéticos (ensaio Allium cepa), fisiológicos, anatômicos e bioquímicos do ácido húmico do lodo de esgoto sanitário. Foi realizada caracterização elementar do material para a definição das doses. Após 20 dias de tratamento, foram realizadas coletas do material e, posteriormente, analisadas. A caracterização química do AH indicou-o como bom condicionador para culturas apresentando elevadas taxas de C, H e N. Não foi observado efeito de toxicidade, citotoxicidade, genotoxicidade e mutagenicidade do AH. Foi verificado aumento expressivo de todos os pigmentos fotossintéticos vegetais nas concentrações mais altas (2 mM C L-1 e 4 mM C L-1). Houve aumento da expressão da ATPAse em todos os tratamentos e das enzimas do estresse oxidativo (CAT, SOD, APX, GST) em diferentes concentrações. A integração destas análises permitiu concluir que o ácido húmico do lodo de esgoto pode ser utilizado como adubo orgânico, pois foi observado benefícios no vegetal tais como maior crescimento vegetal e aumento da atividade nas enzimas do estresse oxidativo.
Resumo:
The different methods of sewage sludge stabilization modify their physical chemical and biological properties, altering its efficiency when applied in agriculture. The objective of this study was to evaluate the nutrient levels in soil and the yield of sunflower fertilized with sewage sludge stabilized by different processes. The experiment was conducted in Cambisol, with the treatments: control (without fertilization), fertilization with sewage sludge solarized, composted, vermicomposted, limed and chemical fertilizer recommended for sunflower crop. The experimental design a randomized block with four replications. The different methods of sewage sludge treatment did not affect the yield; however, the application of sewage sludge, regardless the stabilization process adopted, was more effective than chemical fertilizer and the control treatment. Overall, fertilization with limed sewage sludge provided higher soil nutrients concentrations, while treatments with composted and vermicomposted sewage sludge showed higher levels of nutrients in the plant.
Resumo:
This paper starts with the analysis of the unusual inherence mechanism, from two aspects: accumulating and human error. We put forward twelve factors affected the decision of the emergency treatment plan in practice and summarized the evaluation index system combining with literature data. Then we screened out eighteen representative indicators by used the FDM expert questionnaire in the first phase. Hereafter, we calculated the weight of evaluation index and sorted them by the FAHP expert questionnaire, and came up with the frame of the evaluation rule by combined with the experience. In the end, the evaluation principles are concluded.
Resumo:
Mestrado em Engenharia Química
Resumo:
In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Mat`ern models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.
Resumo:
O tratamento das águas residuais domésticas surge com o intuito de degradar os poluentes presentes, para que as águas residuais tratadas não prejudiquem o ambiente nem a saúde pública. O presente trabalho teve como objetivo a conceção e o dimensionamento de uma Estação de Tratamento de Águas Residuais (ETAR) na freguesia de Canelas com a finalidade de substituir a já existente e permitir a ampliação da área da rede de saneamento da freguesia. Foram considerados dois tipos de ETAR’s, compacta e convencional, para tratar águas residuais domésticas de aproxidamente 2000 habitantes, com um caudal médio de 400 m3/dia e um caudal de ponta de 1136,7 m3/dia. Das duas opções optou-se pela convencional uma vez que acarreta um menor investimento, no valor de 187 232 €, e se considera também mais adequada às características do efluente a tratar. O tratamento escolhido inclui inicialmente uma gradagem, com uma grade constituída por sete barras com um espaçamento de 20 mm entre elas, seguida de um tamisador rotativo com uma abertura de malha de 3 mm. Depois do tamisador, optou-se por um sistema de desarenação/desengorduramento com um volume do tanque de 3,95 m3 e um fluxo de ar de 17,9 m3/h. Na fase seguinte considerou-se um tratamento biológico por lamas ativadas em regime de arejamento prolongado num tanque de arejamento de volume igual a 245,8 m3 com um arejador submerso, seguindo-se um decantador secundário de volume 33,3 m3. Por último, escolheu-se um sistema de desinfeção por ultravioleta e, a montante do mesmo, um filtro rápido para eliminar pequenas partículas que o efluente ainda possa conter. Para a desinfeção foram consideradas duas secções com cinco módulos de duas lâmpadas cada, ou seja, vinte lâmpadas ultravioleta. Dos resíduos produzidos pelo tratamento da água residual, os gradados e as areias serão encaminhados para aterro, enquanto que as lamas serão enviadas para a ETAR das Termas de S.Vicente, para que sofram o tratamento adequado e sejam encaminhadas para o destinal final adequado (aplicação em solos agrícolas, compostagem ou em alternativa para aterro). No caso da ETAR covencional foi ainda avaliada a possível reutilização de um decantador da ETAR de Milhundos uma vez que esta se encontrava em fase de desativação. Desta avaliação, concluiu-se que não seria economicamente viável o seu reaproveitamento. Mestrado em Engenharia Química – Tecnologias de Proteção Ambiental Para além disso realizou-se também um levantamento dos principais problemas que ocorrem na maioria das ETAR’s e foram apresentadas as respetivas sugestões de resolução. A realização de um inquérito permititu concluir que os odores são o problema que mais causa incómodo à população.
Resumo:
New emerging contaminants could represent a danger to the environment and Humanity with repercussions not yet known. One of the major worldwide pharmaceutical and personal care productions are antimicrobials products, triclosan, is an antimicrobial agent present in most products. Despite the high removal rate of triclosan present in wastewater treatments, triclosan levels are on the rise in the environment through disposal of wastewater effluent and use of sewage sludge in land application. Regulated in the EC/1272/2008 (annex VI, table 3.1), this compound is considered very toxic to aquatic life and it has been reported that photochemical transformation of triclosan produces dioxins. In the current work it was defined three objectives; determination of the most efficient process in triclosan degradation, recurring to photochemical degradation methods comparing different sources of light; identification of the main by-products formed during the degradation and the study of the influence of the Fenton and photo-Fenton reaction. Photochemical degradation methods such as: photocatalysis under florescent light (UV), photocatalysis under visible light (sunlight), photocatalysis under LEDs, photo-Fenton and Fenton reaction have been compared in this work. The degradation of triclosan was visualized through gas chromatography/mass spectrometry (GC/MS). In this study photo-Fenton reaction has successfully oxidized triclosan to H2O and CO2 without any by-products within 2 hours. Photocatalysis by titanium dioxide (TiO2) under LEDs was possible, having a degradation rate of 53% in an 8 hours essay. The degradation rate of the Fenton reaction, UV light and sunlight showed degradation between 90% and 95%. The results are reported to the data observed without statistic support, since this was not possible during the work period. Hydroquinone specie and 2,4-dichlorophenol by-products were identified in the first hour of photocatalysis by UV. A common compound, possibly identified has C7O4H , was present at the degradation by UV, sunlight and LEDs and was concluded to be a contaminant. In the future more studies in the use of LEDs should be undertaken given the advantages of long durability and low consumption of energy of these lamps and that due to their negative impact on the environment fluorescent lamps are being progressively made unavailable by governments, requiring new solutions to be found. Fenton and photo-Fenton reactions can also be costly processes given the expensive reagents used.
Resumo:
Phosphorus (P) is becoming a scarce element due to the decreasing availability of primary sources. Therefore, recover P from secondary sources, e.g. waste streams, have become extremely important. Sewage sludge ash (SSA) is a reliable secondary source of P. The use of SSAs as a direct fertilizer has very restricted legislation due to the presence of inorganic contaminants. Furthermore, the P present in SSAs is not in a plant-available form. The electrodialytic (ED) process is one of the methods under development to recover P and simultaneously remove heavy metals. The present work aimed to optimize the P recovery through a 2 compartment electrodialytic cell. The research was divided in three independent phases. In the first phase, ED experiments were carried out for two SSAs from different seasons, varying the duration of the ED process (2, 4, 6 and 9 days). During the ED treatment the SSA was suspended in distilled water in the anolyte, which was separated from the catholyte by a cation exchange membrane. From both ashes 90% of P was successfully extracted after 6 days of treatment. Regarding the heavy metals removal, one of the SSAs had a better removal than the other. Therefore, it was possible to conclude that SSAs from different seasons can be submitted to ED process under the same parameters. In the second phase, the two SSAs were exposed to humidity and air prior to ED, in order to carbonate them. Although this procedure was not successful, ED experiments were carried out varying the duration of the treatment (2 and 6 days) and the period of air exposure that SSAs were submitted to (7, 14 and 30 days). After 6 days of treatment and 30 days of air exposure, 90% of phosphorus was successfully extracted from both ashes. No differences were identified between carbonated and non-carbonated SSAs. Thus, SSAs that were exposed to the air and humidity, e.g. SSAs stored for 30 days in an open deposit, can be treated under the same parameters as the SSAs directly collected from the incineration process. In the third phase, ED experiments were carried out during 6 days varying the stirring time (0, 1, 2 and 4 h/day) in order to investigate if energy can be saved on the stirring process. After 6 days of treatment and 4 h/day stirring, 80% and 90% of P was successfully extracted from SSA-A and SSA-B, respectively. This value is very similar to the one obtained for 6 days of treatment stirring 24 h/day.
Resumo:
Phosphorus is a macronutrient essential to life which comes from phosphate rock, a non-renewable resource. Sewage sludge from wastewater treatment plants (WWTP) is a secondary resource rich in phosphorus that can be valorized. However, organic compounds are detected in sewage sludge, due to its non-polar and hydrophobic character, being considered an environmental risk. The present dissertation aims to study the efficiency of the electrodialytic process (ED) when applied to sewage sludge aiming phosphorus recovery and organic contaminants removal. Four organic compounds were analyzed: 17α-ethynylestradiol (EE2), bisphenol A (BPA), caffeine (Caf) and oxybenzone (MBPh). The experiments took place in an ED cell with two compartments and an anion exchange membrane, with the sludge in the cathode compartment. The experiments were carried out for three days with spiked sewage sludge (six assays). One control experiment was done without current, three experiments were carried out applying a constant current of 50, 75, and 100 mA and two experiments were carried out applying sequential currents: 50 mA, 75 mA and 100 mA and the opposite (100-75-50 mA). A qualitative and quantitative analysis of microorganisms existing in the samples was also done. At the end, the pH increased in the sewage sludge favoring phosphorus recovery. In terms of phosphorus, the highest recovery was achieved in the experiment run with 100 mA, where 70.3±2.0% of total phosphorus was recovered in the electrolyte. Generally, compounds degradation was favored by the current. Caf and MBPh achieved degradation percentages of 96.2±0.2% and 84.8±1.3%, respectively, in 100 mA assay. EE2 (83.1±1.7%) and BPA (91.8±4.6%) degradations were favored by 50 mA current. A total of 35 taxa from four different groups were identified, totalizing between 81,600-273,000 individuals per gram of initial sludges. After ED, microbial community population decreased between 47-98%. Arcella gibbosa represented 61% of the total observed organisms and revealed to be more tolerant to medium changes.
Resumo:
This Study assessed the development of sludge treatment and reuse policy since the original 1993 National Sludge Strategy Report (Weston-FTA, 1993). A review of the 48 sludge treatment centres, current wastewater treatment systems and current or planned sludge treatment and reuse systems was carried out Sludges from all Regional Sludge Treatment Centres (areas) were characterised through analysis of selected parameters. There have been many changes to the original policy, as a result of boundary reviews, delays in developing sludge management plans, development in technology and changes in tendering policy, most notably a move to design-build-operate (DBO) projects. As a result, there are now 35 designated Hub Centres. Only 5 of the Hub Centres are producing Class A Biosolids. These are Ringsend, Killamey, Carlow, Navan and Osberstown. Ringsend is the only Hub Centre that is fully operational, treating sludge from surrounding regions by Thermal Drying. Killamey is producing Class A Biosolids using Autothermal Thermophilic Aerobic Digestion (ATAD) but is not, as yet, treating imported sludge. The remaining three plants are producing Class A Biosolids using Alkaline Stabilisation. Anaerobic Digestion with post pasteurisation is the most common form of sludge treatment, with 11 Hub Centres proposing to use it. One plant is using ATAD, two intend to use Alkaline Stabilisation, seven have selected Thermal Drying and three have selected Composting. While the remaining plants have not decided which sludge treatment to select, this is because of incomplete Sludge Management Plans and on DBO contracts. Analysis of sludges from the Hub Centres showed that all Irish sewage sludge is safe for agricultural reuse as defined by the Waste Management Regulations {Use of Sewage Sludge in Agriculture) (S.I. 267/2001), providing that a nutrient management plan is taken into consideration and that the soil limits of the 1998 (S.I. 148/1998) Waste Management Regulations are not exceeded.
Resumo:
The polychaete composition and distribution within mussel beds were studied in order to assess organic pollution due to domestic sewage in a rocky shore of Mar del Plata (Argentina) during 1997. Four stations and a control site were randomly sampled around the local effluent. Quantitative data on polychaetes, as well as sediment accumulated among mussels and its organic carbon content were measured. Polychaete distribution patterns are related to the organic matter gradient, being Capitella cf. capitata, Neanthes succinea (Frey & Leuckart, 1847) and Boccardia polybranchia (Haswell, 1885) the dominant indicator species close to the effluent. At medial distances, the cirratulids Caulleriella alata (Southern, 1914) and Cirratulus cirratus (Müller, 1776) are very important in abundance. The syllids Syllis prolixa Ehlers, 1901 and S. gracilis Grube, 1840 are distributed along the study area, but dominate at the medial stations and at the control site. The orbiniid Protoariciella uncinata Hartmann-Schröder, 1962 is subdominant at the control station.
Resumo:
An assessment of sewage workers' exposure to airborne cultivable bacteria, fungi and inhaled endotoxins was performed at 11 sewage treatment plants. We sampled the enclosed and unenclosed treatment areas in each plant and evaluated the influence of seasons (summer and winter) on bioaerosol levels. We also measured personal exposure to endotoxins of workers during special operation where a higher risk of bioaerosol inhalation was assumed. Results show that only fungi are present in significantly higher concentrations in summer than in winter (2331 +/- 858 versus 329 +/- 95 CFU m(-3)). We also found that there are significantly more bacteria in the enclosed area, near the particle grids for incoming water, than in the unenclosed area near the aeration basins (9455 +/- 2661 versus 2435 +/- 985 CFU m(-3) in summer and 11 081 +/- 2299 versus 2002 +/- 839 CFU m(-3) in winter). All bioaerosols were frequently above the recommended values of occupational exposure. Workers carrying out special tasks such as cleaning tanks were exposed to very high levels of endotoxins (up to 500 EU m(-3)) compared to routine work. The species composition and concentration of airborne Gram-negative bacteria were also studied. A broad spectrum of different species within the Pseudomonadaceae and the Enterobacteriaceae families were predominant in nearly all plants investigated. [Authors]
Resumo:
PURPOSE: Bioaerosols and their constituents, such as endotoxins, are capable of causing an inflammatory reaction at the level of the lung-blood barrier, which becomes more permeable. Thus, it was hypothesized that occupational exposure to bioaerosols can increase leakage of surfactant protein-D (SP-D), a lung-specific protein, into the bloodstream. METHODS: SP-D was determined by ELISA in 316 wastewater workers, 67 garbage collectors, and 395 control subjects. Exposure was assessed with four interview-based indicators and by preliminary endotoxin measurements using the Limulus amoebocyte lysate assay. Influence of exposure on serum SP-D was assessed by multiple linear regression considering smoking, glomerular function, lung diseases, obesity, and other confounders. RESULTS: Overall, mean exposure levels to endotoxins were below 100 EU/m(3). However, special tasks of wastewater workers caused higher endotoxin exposure. SP-D concentration was slightly increased in this occupational group and associated with the occurrence of splashes and contact to raw sewage. No effect was found in garbage collectors. Smoking increased serum SP-D. No clinically relevant correlation between spirometry results and SP-D concentrations appeared. CONCLUSIONS: These results support the hypothesis that inhalation of bioaerosols, even at low concentrations, has a subclinical effect on the lung-blood barrier, the permeability of which increases without associated spirometric changes.
Resumo:
Acid mine drainage (AMD) from the Zn-Pb(-Ag-Bi-Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of similar to 1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO(3), 4330 mg/L Fe and 29,250 mg/L SO(4). Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO(4)). The variations in the H and 0 isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI similar to 0.25) and anglesite (SI similar to 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI similar to 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI similar to -0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (similar to 90 wt.% water) of pH similar to 1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3-7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb approximate to Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu. and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn: all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks. (C) 2010 Elsevier Ltd. All rights reserved.