803 resultados para Sensor Networks and Data Streaming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) consist of thousands of nodes that need to communicate with each other. However, it is possible that some nodes are isolated from other nodes due to limited communication range. This paper focuses on the influence of communication range on the probability that all nodes are connected under two conditions, respectively: (1) all nodes have the same communication range, and (2) communication range of each node is a random variable. In the former case, this work proves that, for 0menor queepsmenor quee^(-1) , if the probability of the network being connected is 0.36eps , by means of increasing communication range by constant C(eps) , the probability of network being connected is at least 1-eps. Explicit function C(eps) is given. It turns out that, once the network is connected, it also makes the WSNs resilient against nodes failure. In the latter case, this paper proposes that the network connection probability is modeled as Cox process. The change of network connection probability with respect to distribution parameters and resilience performance is presented. Finally, a method to decide the distribution parameters of node communication range in order to satisfy a given network connection probability is developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexity of planning a wireless sensor network is dependent on the aspects of optimization and on the application requirements. Even though Murphy's Law is applied everywhere in reality, a good planning algorithm will assist the designers to be aware of the short plates of their design and to improve them before the problems being exposed at the real deployment. A 3D multi-objective planning algorithm is proposed in this paper to provide solutions on the locations of nodes and their properties. It employs a developed ray-tracing scheme for sensing signal and radio propagation modelling. Therefore it is sensitive to the obstacles and makes the models of sensing coverage and link quality more practical compared with other heuristics that use ideal unit-disk models. The proposed algorithm aims at reaching an overall optimization on hardware cost, coverage, link quality and lifetime. Thus each of those metrics are modelled and normalized to compose a desirability function. Evolutionary algorithm is designed to efficiently tackle this NP-hard multi-objective optimization problem. The proposed algorithm is applicable for both indoor and outdoor 3D scenarios. Different parameters that affect the performance are analyzed through extensive experiments; two state-of-the-art algorithms are rebuilt and tested with the same configuration as that of the proposed algorithm. The results indicate that the proposed algorithm converges efficiently within 600 iterations and performs better than the compared heuristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a communication interface between supervisory low-cost mobile robots and domestic Wireless Sensor Network (WSN) based on the Zig Bee protocol from different manufacturers. The communication interface allows control and communication with other network devices using the same protocol. The robot can receive information from sensor devices (temperature, humidity, luminosity) and send commands to actuator devices (lights, shutters, thermostats) from different manufacturers. The architecture of the system, the interfaces and devices needed to establish the communication are described in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports extensive tests of empirical equations developed by different authors for harbour breakwater overtopping. First, the existing equations are compiled and evaluated as tools for estimating the overtopping rates on sloping and vertical breakwaters. These equations are then tested using the data obtained in a number of laboratory studies performed in the Centre for Harbours and Coastal Studies of the CEDEX, Spain. It was found that the recommended application ranges of the empirical equations typically deviate from those revealed in the experimental tests. In addition, a neural network model developed within the European CLASH Project is tested. The wind effects on overtopping are also assessed using a reduced scale physical model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El consumo energético de las Redes de Sensores Inalámbricas (WSNs por sus siglas en inglés) es un problema histórico que ha sido abordado desde diferentes niveles y visiones, ya que no solo afecta a la propia supervivencia de la red sino que el creciente uso de dispositivos inteligentes y el nuevo paradigma del Internet de las Cosas hace que las WSNs tengan cada vez una mayor influencia en la huella energética. Debido a la tendencia al alza en el uso de estas redes se añade un nuevo problema, la saturación espectral. Las WSNs operan habitualmente en bandas sin licencia como son las bandas Industrial, Científica y Médica (ISM por sus siglas en inglés). Estas bandas se comparten con otro tipo de redes como Wi-Fi o Bluetooth cuyo uso ha crecido exponencialmente en los últimos años. Para abordar este problema aparece el paradigma de la Radio Cognitiva (CR), una tecnología que permite el acceso oportunista al espectro. La introducción de capacidades cognitivas en las WSNs no solo permite optimizar su eficiencia espectral sino que también tiene un impacto positivo en parámetros como la calidad de servicio, la seguridad o el consumo energético. Sin embargo, por otra parte, este nuevo paradigma plantea algunos retos relacionados con el consumo energético. Concretamente, el sensado del espectro, la colaboración entre los nodos (que requiere comunicación adicional) y el cambio en los parámetros de transmisión aumentan el consumo respecto a las WSN clásicas. Teniendo en cuenta que la investigación en el campo del consumo energético ha sido ampliamente abordada puesto que se trata de una de sus principales limitaciones, asumimos que las nuevas estrategias deben surgir de las nuevas capacidades añadidas por las redes cognitivas. Por otro lado, a la hora de diseñar estrategias de optimización para CWSN hay que tener muy presentes las limitaciones de recursos de estas redes en cuanto a memoria, computación y consumo energético de los nodos. En esta tesis doctoral proponemos dos estrategias de reducción de consumo energético en CWSNs basadas en tres pilares fundamentales. El primero son las capacidades cognitivas añadidas a las WSNs que proporcionan la posibilidad de adaptar los parámetros de transmisión en función del espectro disponible. La segunda es la colaboración, como característica intrínseca de las CWSNs. Finalmente, el tercer pilar de este trabajo es teoría de juegos como algoritmo de soporte a la decisión, ampliamente utilizado en WSNs debido a su simplicidad. Como primer aporte de la tesis se presenta un análisis completo de las posibilidades introducidas por la radio cognitiva en materia de reducción de consumo para WSNs. Gracias a las conclusiones extraídas de este análisis, se han planteado las hipótesis de esta tesis relacionadas con la validez de usar capacidades cognitivas como herramienta para la reducción de consumo en CWSNs. Una vez presentada las hipótesis, pasamos a desarrollar las principales contribuciones de la tesis: las dos estrategias diseñadas para reducción de consumo basadas en teoría de juegos y CR. La primera de ellas hace uso de un juego no cooperativo que se juega mediante pares de jugadores. En la segunda estrategia, aunque el juego continúa siendo no cooperativo, se añade el concepto de colaboración. Para cada una de las estrategias se presenta el modelo del juego, el análisis formal de equilibrios y óptimos y la descripción de la estrategia completa donde se incluye la interacción entre nodos. Con el propósito de probar las estrategias mediante simulación e implementación en dispositivos reales hemos desarrollado un marco de pruebas compuesto por un simulador cognitivo y un banco de pruebas formado por nodos cognitivos capaces de comunicarse en tres bandas ISM desarrollados en el B105 Lab. Este marco de pruebas constituye otra de las aportaciones de la tesis que permitirá el avance en la investigación en el área de las CWSNs. Finalmente, se presentan y discuten los resultados derivados de la prueba de las estrategias desarrolladas. La primera estrategia proporciona ahorros de energía mayores al 65% comparados con una WSN sin capacidades cognitivas y alrededor del 25% si la comparamos con una estrategia cognitiva basada en el sensado periódico del espectro para el cambio de canal de acuerdo a un nivel de ruido fijado. Este algoritmo se comporta de forma similar independientemente del nivel de ruido siempre que éste sea espacialmente uniformemente. Esta estrategia, a pesar de su sencillez, nos asegura el comportamiento óptimo en cuanto a consumo energético debido a la utilización de teoría de juegos en la fase de diseño del comportamiento de los nodos. La estrategia colaborativa presenta mejoras respecto a la anterior en términos de protección frente al ruido en escenarios de ruido más complejos donde aporta una mejora del 50% comparada con la estrategia anterior. ABSTRACT Energy consumption in Wireless Sensor Networks (WSNs) is a known historical problem that has been addressed from different areas and on many levels. But this problem should not only be approached from the point of view of their own efficiency for survival. A major portion of communication traffic has migrated to mobile networks and systems. The increased use of smart devices and the introduction of the Internet of Things (IoT) give WSNs a great influence on the carbon footprint. Thus, optimizing the energy consumption of wireless networks could reduce their environmental impact considerably. In recent years, another problem has been added to the equation: spectrum saturation. Wireless Sensor Networks usually operate in unlicensed spectrum bands such as Industrial, Scientific, and Medical (ISM) bands shared with other networks (mainly Wi-Fi and Bluetooth). To address the efficient spectrum utilization problem, Cognitive Radio (CR) has emerged as the key technology that enables opportunistic access to the spectrum. Therefore, the introduction of cognitive capabilities to WSNs allows optimizing their spectral occupation. Cognitive Wireless Sensor Networks (CWSNs) do not only increase the reliability of communications, but they also have a positive impact on parameters such as the Quality of Service (QoS), network security, or energy consumption. These new opportunities introduced by CWSNs unveil a wide field in the energy consumption research area. However, this also implies some challenges. Specifically, the spectrum sensing stage, collaboration among devices (which requires extra communication), and changes in the transmission parameters increase the total energy consumption of the network. When designing CWSN optimization strategies, the fact that WSN nodes are very limited in terms of memory, computational power, or energy consumption has to be considered. Thus, light strategies that require a low computing capacity must be found. Since the field of energy conservation in WSNs has been widely explored, we assume that new strategies could emerge from the new opportunities presented by cognitive networks. In this PhD Thesis, we present two strategies for energy consumption reduction in CWSNs supported by three main pillars. The first pillar is that cognitive capabilities added to the WSN provide the ability to change the transmission parameters according to the spectrum. The second pillar is that the ability to collaborate is a basic characteristic of CWSNs. Finally, the third pillar for this work is the game theory as a decision-making algorithm, which has been widely used in WSNs due to its lightness and simplicity that make it valid to operate in CWSNs. For the development of these strategies, a complete analysis of the possibilities is first carried out by incorporating the cognitive abilities into the network. Once this analysis has been performed, we expose the hypotheses of this thesis related to the use of cognitive capabilities as a useful tool to reduce energy consumption in CWSNs. Once the analyses are exposed, we present the main contribution of this thesis: the two designed strategies for energy consumption reduction based on game theory and cognitive capabilities. The first one is based on a non-cooperative game played between two players in a simple and selfish way. In the second strategy, the concept of collaboration is introduced. Despite the fact that the game used is also a non-cooperative game, the decisions are taken through collaboration. For each strategy, we present the modeled game, the formal analysis of equilibrium and optimum, and the complete strategy describing the interaction between nodes. In order to test the strategies through simulation and implementation in real devices, we have developed a CWSN framework composed by a CWSN simulator based on Castalia and a testbed based on CWSN nodes able to communicate in three different ISM bands. We present and discuss the results derived by the energy optimization strategies. The first strategy brings energy improvement rates of over 65% compared to WSN without cognitive techniques. It also brings energy improvement rates of over 25% compared with sensing strategies for changing channels based on a decision threshold. We have also seen that the algorithm behaves similarly even with significant variations in the level of noise while working in a uniform noise scenario. The collaborative strategy presents improvements respecting the previous strategy in terms of noise protection when the noise scheme is more complex where this strategy shows improvement rates of over 50%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the target localization problem in wireless visual sensor networks. Additive noises and measurement errors will affect the accuracy of target localization when the visual nodes are equipped with low-resolution cameras. In the goal of improving the accuracy of target localization without prior knowledge of the target, each node extracts multiple feature points from images to represent the target at the sensor node level. A statistical method is presented to match the most correlated feature point pair for merging the position information of different sensor nodes at the base station. Besides, in the case that more than one target exists in the field of interest, a scheme for locating multiple targets is provided. Simulation results show that, our proposed method has desirable performance in improving the accuracy of locating single target or multiple targets. Results also show that the proposed method has a better trade-off between camera node usage and localization accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique for systematic peptide variation by a combination of rational and evolutionary approaches is presented. The design scheme consists of five consecutive steps: (i) identification of a “seed peptide” with a desired activity, (ii) generation of variants selected from a physicochemical space around the seed peptide, (iii) synthesis and testing of this biased library, (iv) modeling of a quantitative sequence-activity relationship by an artificial neural network, and (v) de novo design by a computer-based evolutionary search in sequence space using the trained neural network as the fitness function. This strategy was successfully applied to the identification of novel peptides that fully prevent the positive chronotropic effect of anti-β1-adrenoreceptor autoantibodies from the serum of patients with dilated cardiomyopathy. The seed peptide, comprising 10 residues, was derived by epitope mapping from an extracellular loop of human β1-adrenoreceptor. A set of 90 peptides was synthesized and tested to provide training data for neural network development. De novo design revealed peptides with desired activities that do not match the seed peptide sequence. These results demonstrate that computer-based evolutionary searches can generate novel peptides with substantial biological activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a composite multi-layer classifier system for predicting the subcellular localization of proteins based on their amino acid sequence. The work is an extension of our previous predictor PProwler v1.1 which is itself built upon the series of predictors SignalP and TargetP. In this study we outline experiments conducted to improve the classifier design. The major improvement came from using Support Vector machines as a "smart gate" sorting the outputs of several different targeting peptide detection networks. Our final model (PProwler v1.2) gives MCC values of 0.873 for non-plant and 0.849 for plant proteins. The model improves upon the accuracy of our previous subcellular localization predictor (PProwler v1.1) by 2% for plant data (which represents 7.5% improvement upon TargetP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large monitoring networks are becoming increasingly common and can generate large datasets from thousands to millions of observations in size, often with high temporal resolution. Processing large datasets using traditional geostatistical methods is prohibitively slow and in real world applications different types of sensor can be found across a monitoring network. Heterogeneities in the error characteristics of different sensors, both in terms of distribution and magnitude, presents problems for generating coherent maps. An assumption in traditional geostatistics is that observations are made directly of the underlying process being studied and that the observations are contaminated with Gaussian errors. Under this assumption, sub–optimal predictions will be obtained if the error characteristics of the sensor are effectively non–Gaussian. One method, model based geostatistics, assumes that a Gaussian process prior is imposed over the (latent) process being studied and that the sensor model forms part of the likelihood term. One problem with this type of approach is that the corresponding posterior distribution will be non–Gaussian and computationally demanding as Monte Carlo methods have to be used. An extension of a sequential, approximate Bayesian inference method enables observations with arbitrary likelihoods to be treated, in a projected process kriging framework which is less computationally intensive. The approach is illustrated using a simulated dataset with a range of sensor models and error characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks have been identified as one of the key technologies for the 21st century. In order to overcome their limitations such as fault tolerance and conservation of energy, we propose a middleware solution, In-Motes. In-Motes stands as a fault tolerant platform for deploying and monitoring applications in real time offers a number of possibilities for the end user giving him in parallel the freedom to experiment with various parameters, in an effort the deployed applications to run in an energy efficient manner inside the network. The proposed scheme is evaluated through the In-Motes EYE application, aiming to test its merits under real time conditions. In-Motes EYE application which is an agent based real time In-Motes application developed for sensing acceleration variations in an environment. The application was tested in a prototype area, road alike, for a period of four months.