939 resultados para Semimajor axis
Resumo:
In selected samples, a considerable number of patients at clinical high risk of psychosis (CHR) are found to meet criteria for co-morbid clinical psychiatric disorders. It is not known how clinical diagnoses correspond to or even predict transitions to psychosis (TTP). Our aim was to examine distributions of life-time and current Axis I diagnoses, and their association with TTP in CHR patients.
Resumo:
Heroin dependence is associated with a stressful environment and with dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. The present study examined the acute effects of intravenous heroin versus placebo on the HPA axis response in heroin-dependent patients. Twenty-eight heroin-dependent patients in heroin-assisted treatment and 20 age- and sex-matched healthy participants were included in a controlled trial in which patients were twice administered heroin or saline in a crossover design, and healthy controls were only administered saline. The HPA axis response was measured by adrenocorticotropic hormone (ACTH) levels and by cortisol levels in serum and saliva before and 20 and 60 minutes after substance administration. Craving, withdrawal, and anxiety levels were measured before and 60 minutes after substance application. Plasma concentrations of heroin and its main metabolites were assessed using high-performance liquid chromatography. Heroin administration reduces craving, withdrawal, and anxiety levels and leads to significant decreases in ACTH and cortisol concentrations (P < 0.01). After heroin administration, cortisol concentrations did not differ from healthy controls, and ACTH levels were significantly lower (P < 0.01). In contrast, when patients receive saline, all hormone levels were significantly higher in patients than in healthy controls (P < 0.01). Heroin-dependent patients showed a normalized HPA axis response compared to healthy controls when they receive their regular heroin dose. These findings indicate that regular opioid administration protects addicts from stress and underscore the clinical significance of heroin-assisted treatment for heroin-dependent patients.
Resumo:
The adequate replacement dose of estrogens during infancy and childhood is still not known in girls. Aromatase deficiency offers an excellent model to study how much estrogens are needed during infancy, childhood and adulthood.
Resumo:
The role of dehydroepiandrosterone-sulfate (DHEA-S) in assessing the integrity of the hypothalamic-pituitary-adrenal (HPA) axis in patients with suspected insufficiency is uncertain.
Resumo:
The GH-IGF axis has profound effects on the local and systemic regulation of bone metabolism and may be important for quality of fracture healing. To test the hypothesis that deficiency of the GH/IGF axis may play a role in the pathogenesis of fracture non-union we investigated whether alterations of serum concentrations of the GH-IGF axis could be related to failed fracture healing compared to timely fracture healing in trauma patients. Serum probes were prospectively collected from 186 patients with surgical treatment of long bone fractures up to 6 months after surgery. Samples from 14 patients with atrophic type of non-union have been compared to 14 matched patients with normal bone healing. Postoperative time courses of serum concentrations have been analyzed using commercially available chemiluminescence sandwich assays (GH), fully automated assay systems (IGF-I, IGFBP-3) or sandwich immunometric assays (ALS). Comparison between both collectives revealed significantly lower serum concentrations of GH dependent ALS during early (1st week after surgery) and of both IGFBP-3 and ALS during late stages of fracture healing (6 and 8 weeks after surgery) in non-union patients, coinciding clinically with failed fracture healing. Tendentially lower serum levels of IGF-I in the non-union group over the entire investigation period were statistically not significant. We have been able to show time courses of serum concentrations of the GH/IGF-I axis during normal and failed fracture healing in humans. An impairment of the GH/IGF-I axis might be involved in the biochemical mechanisms determining delayed or failed fracture healing.
Resumo:
Wind energy has been one of the most growing sectors of the nation’s renewable energy portfolio for the past decade, and the same tendency is being projected for the upcoming years given the aggressive governmental policies for the reduction of fossil fuel dependency. Great technological expectation and outstanding commercial penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) technologies. Given its great acceptance, size evolution of wind turbines over time has increased exponentially. However, safety and economical concerns have emerged as a result of the newly design tendencies for massive scale wind turbine structures presenting high slenderness ratios and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this regard, safety operation requires not only having first-hand information regarding actual structural dynamic conditions under aerodynamic action, but also a deep understanding of the environmental factors in which these multibody rotating structures operate. Given the cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of failure in terms of resistance and serviceability conditions, at any given time. Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the use of a more sophisticated mathematical framework that could properly handle all these sources of indetermination. The attainable modeling complexity that arises as a result of these characterizations demands a data-driven experimental validation methodology to calibrate and corroborate the model. For this aim, System Identification (SI) techniques offer a spectrum of well-established numerical methods appropriated for stationary, deterministic, and data-driven numerical schemes, capable of predicting actual dynamic states (eigenrealizations) of traditional time-invariant dynamic systems. As a consequence, it is proposed a modified data-driven SI metric based on the so called Subspace Realization Theory, now adapted for stochastic non-stationary and timevarying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this investigation explores the characterization of the turbine loading and response envelopes for critical failure modes of the structural components the wind turbine is made of. In the long run, both aerodynamic framework (theoretical model) and system identification (experimental model) will be merged in a numerical engine formulated as a search algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) process. This iterative engine is based on a set of function minimizations computed by a metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of four major parts: (1) development of an analytical aerodynamic framework that predicts interacted wind-structure stochastic loads on wind turbine components; (2) development of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes dampedgyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural health monitoring (SHM) algorithm via stochastic subspace identification methods; and (4) a numerical search (optimization) engine based on ASA and MAC capable of updating the SFE aerodynamic model.
Resumo:
BACKGROUND: Endoderm organ primordia become specified between gastrulation and gut tube folding in Amniotes. Although the requirement for RA signaling for the development of a few individual endoderm organs has been established a systematic assessment of its activity along the entire antero-posterior axis has not been performed in this germ layer. METHODOLOGY/PRINCIPAL FINDINGS: RA is synthesized from gastrulation to somitogenesis in the mesoderm that is close to the developing gut tube. In the branchial arch region specific levels of RA signaling control organ boundaries. The most anterior endoderm forming the thyroid gland is specified in the absence of RA signaling. Increasing RA in anterior branchial arches results in thyroid primordium repression and the induction of more posterior markers such as branchial arch Hox genes. Conversely reducing RA signaling shifts Hox genes posteriorly in endoderm. These results imply that RA acts as a caudalizing factor in a graded manner in pharyngeal endoderm. Posterior foregut and midgut organ primordia also require RA, but exposing endoderm to additional RA is not sufficient to expand these primordia anteriorly. We show that in chick, in contrast to non-Amniotes, RA signaling is not only necessary during gastrulation, but also throughout gut tube folding during somitogenesis. Our results show that the induction of CdxA, a midgut marker, and pancreas induction require direct RA signaling in endoderm. Moreover, communication between CdxA(+) cells is necessary to maintain CdxA expression, therefore synchronizing the cells of the midgut primordium. We further show that the RA pathway acts synergistically with FGF4 in endoderm patterning rather than mediating FGF4 activity. CONCLUSIONS/SIGNIFICANCE: Our work establishes that retinoic acid (RA) signaling coordinates the position of different endoderm organs along the antero-posterior axis in chick embryos and could serve as a basis for the differentiation of specific endodermal organs from ES cells.
Resumo:
Provision of additional floor heating (33 to 34 degrees C) at birth and during the early postnatal hours is favorable for newborn piglets of domestic sows (Sus scrofa). We investigated whether this relatively high temperature influenced sow behavior and physiology around farrowing. One-half of 28 second-parity pregnant sows were randomly chosen to be exposed to floor heating 12 h after onset of nest building and until 48 h after birth of the first piglet (heat treatment), whereas the rest of the sows entered the control group (control treatment) with no floor heating. Hourly blood sampling from 8 h before and until 24 h after the birth of the first piglet was used for investigation of temporal changes in plasma concentrations of oxytocin, cortisol, and ACTH. In addition, occurrence and duration of sow postures were recorded -8 to +48 h relative to the birth of the first piglet. There was a clear temporal development in sow behavior and hormone concentrations (ACTH, cortisol, and oxytocin) across parturition (P < 0.001), independent of treatment. In general, hormone concentrations increased from the start to the end of farrowing. The observed oxytocin increase and peak late in farrowing coincided with the passive phase where sows lie laterally with an overall reduced activity. Floor heating increased the mean concentration of cortisol (P = 0.02; estimated as 29% greater than in controls) and tended to increase the mean concentration of ACTH (P = 0.08; estimated as 17% greater than in controls), but we did not find any treatment effect on mean oxytocin concentrations, the course of parturition, or the behavior of sows. Behavioral thermoregulation may, however, have lost some function for the sows because the floor was fully heated in our study. In addition, exposure to heat decreased the between-sow variation of plasma oxytocin (approximately 31% less relative to control) and ACTH (approximately 46% less relative to control). Whether this decreased variation may be indicative of acute stress or linked to other biological events is unclear. In conclusion, inescapable floor heating (around 33.5 degrees C) may be considered a stressor for sows around farrowing, giving rise to elevated plasma concentrations of cortisol, but without concurrent changes in oxytocin or behavioral activity.
Resumo:
The apical-basal axis of the early plant embryo determines the body plan of the adult organism. To establish a polarized embryonic axis, plants evolved a unique mechanism that involves directional, cell-to-cell transport of the growth regulator auxin. Auxin transport relies on PIN auxin transporters 1], whose polar subcellular localization determines the flow directionality. PIN-mediated auxin transport mediates the spatial and temporal activity of the auxin response machinery 2-7] that contributes to embryo patterning processes, including establishment of the apical (shoot) and basal (root) embryo poles 8]. However, little is known of upstream mechanisms guiding the (re)polarization of auxin fluxes during embryogenesis 9]. Here, we developed a model of plant embryogenesis that correctly generates emergent cell polarities and auxin-mediated sequential initiation of apical-basal axis of plant embryo. The model relies on two precisely localized auxin sources and a feedback between auxin and the polar, subcellular PIN transporter localization. Simulations reproduced PIN polarity and auxin distribution, as well as previously unknown polarization events during early embryogenesis. The spectrum of validated model predictions suggests that our model corresponds to a minimal mechanistic framework for initiation and orientation of the apical-basal axis to guide both embryonic and postembryonic plant development.
Resumo:
OBJECTIVE: The importance of the costimulatory molecules CD28 and CTLA-4 in the pathologic mechanism of rheumatoid arthritis (RA) has been demonstrated by genetic associations and the successful clinical application of CTLA-4Ig for the treatment of RA. This study was undertaken to investigate the role of the CTLA-4/CD28 axis in the local application of CTLA-4Ig in the synovial fluid (SF) of RA patients. METHODS: Quantitative polymerase chain reaction was used to analyze the expression of proinflammatory and antiinflammatory cytokines in ex vivo fluorescence-activated cell sorted CTLA-4+ and CTLA-4- T helper cells from the peripheral blood and SF of RA patients. T helper cells were also analyzed for cytokine expression in vitro after the blockade of CTLA-4 by anti-CTLA-4 Fab fragments or of B7 (CD80/CD86) molecules by CTLA-4Ig. RESULTS: CTLA-4+ T helper cells were unambiguously present in the SF of all RA patients examined, and they expressed increased amounts of interferon-γ (IFNγ), interleukin-17 (IL-17), and IL-10 as compared to CTLA-4- T helper cells. The selective blockade of CTLA-4 in T helper cells from the SF in vitro led to increased levels of IFNγ, IL-2, and IL-17. The concomitant blockade of CD28 and CTLA-4 in T helper cells from RA SF by CTLA-4Ig in vitro resulted in reduced levels of the proinflammatory cytokines IFNγ and IL-2 and increased levels of the antiinflammatory cytokines IL-10 and transforming growth factor β. CONCLUSION: Our ex vivo and in vitro results demonstrate that the CTLA-4/CD28 axis constitutes a drug target for not only the systemic, but potentially also the local, application of the costimulation blocking agent CTLA-4Ig for the treatment of RA.
Resumo:
Context. Planet formation models have been developed during the past years to try to reproduce what has been observed of both the solar system and the extrasolar planets. Some of these models have partially succeeded, but they focus on massive planets and, for the sake of simplicity, exclude planets belonging to planetary systems. However, more and more planets are now found in planetary systems. This tendency, which is a result of radial velocity, transit, and direct imaging surveys, seems to be even more pronounced for low-mass planets. These new observations require improving planet formation models, including new physics, and considering the formation of systems. Aims: In a recent series of papers, we have presented some improvements in the physics of our models, focussing in particular on the internal structure of forming planets, and on the computation of the excitation state of planetesimals and their resulting accretion rate. In this paper, we focus on the concurrent effect of the formation of more than one planet in the same protoplanetary disc and show the effect, in terms of architecture and composition of this multiplicity. Methods: We used an N-body calculation including collision detection to compute the orbital evolution of a planetary system. Moreover, we describe the effect of competition for accretion of gas and solids, as well as the effect of gravitational interactions between planets. Results: We show that the masses and semi-major axes of planets are modified by both the effect of competition and gravitational interactions. We also present the effect of the assumed number of forming planets in the same system (a free parameter of the model), as well as the effect of the inclination and eccentricity damping. We find that the fraction of ejected planets increases from nearly 0 to 8% as we change the number of embryos we seed the system with from 2 to 20 planetary embryos. Moreover, our calculations show that, when considering planets more massive than ~5 M⊕, simulations with 10 or 20 planetary embryos statistically give the same results in terms of mass function and period distribution.