973 resultados para Semi-automatic road extraction
Resumo:
This paper analyzes the effects of parliamentary representation on road infrastructure expenditure during the Spanish Restoration. Using a panel dataset of Spanish provinces in 1880-1914 we find that the allocation of administrative resources among provinces depended both on the delegation characteristics (such as the share of MPs with party leadership positions, and their degree of electoral independence), and the regime"s global search for stability. These results point to the importance of electoral dynamics within semi-democratic political systems, and offer an example of the influence of government tactics on infrastructure allocation.
Resumo:
A simple ion pair-dispersive liquid-liquid microextraction method was proposed for preconcentration trace amounts of rhodium. An ion association complex of RhCl4- and tetradecyldimetylbenzylamonium was extracted into cholorobenzene. The volume and the type of extractive and dispersive solvents, the extraction time and the pH of the aqueous solutions were optimized. The calibration curve was linear in the range of 0.6-500 ng mL-1 of rhodium. The limit of detection was 0.10 ng mL-1 in initial solution and preconcentration factor was 40. The proposed method was successfully applied to the extraction and determination of rhodium in road dust and water samples.
Resumo:
Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1) and plant age. The species were evaluated every 90 days for plant height (PH), crown diameter (CD) and root collar diameter (RCD) (10 cm above the ground), with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH) (1.30 m above the ground). A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.
Resumo:
Bovine coronavirus (BCoV) is a member of the group 2 of the Coronavirus (Nidovirales: Coronaviridae) and the causative agent of enteritis in both calves and adult bovine, as well as respiratory disease in calves. The present study aimed to develop a semi-nested RT-PCR for the detection of BCoV based on representative up-to-date sequences of the nucleocapsid gene, a conserved region of coronavirus genome. Three primers were designed, the first round with a 463bp and the second (semi-nested) with a 306bp predicted fragment. The analytical sensitivity was determined by 10-fold serial dilutions of the BCoV Kakegawa strain (HA titre: 256) in DEPC treated ultra-pure water, in fetal bovine serum (FBS) and in a BCoV-free fecal suspension, when positive results were found up to the 10-2, 10-3 and 10-7 dilutions, respectively, which suggests that the total amount of RNA in the sample influence the precipitation of pellets by the method of extraction used. When fecal samples was used, a large quantity of total RNA serves as carrier of BCoV RNA, demonstrating a high analytical sensitivity and lack of possible substances inhibiting the PCR. The final semi-nested RT-PCR protocol was applied to 25 fecal samples from adult cows, previously tested by a nested RT-PCR RdRp used as a reference test, resulting in 20 and 17 positives for the first and second tests, respectively, and a substantial agreement was found by kappa statistics (0.694). The high sensitivity and specificity of the new proposed method and the fact that primers were designed based on current BCoV sequences give basis to a more accurate diagnosis of BCoV-caused diseases, as well as to further insights on protocols for the detection of other Coronavirus representatives of both Animal and Public Health importance.
Resumo:
This thesis researches automatic traffic sign inventory and condition analysis using machine vision and pattern recognition methods. Automatic traffic sign inventory and condition analysis can be used to more efficient road maintenance, improving the maintenance processes, and to enable intelligent driving systems. Automatic traffic sign detection and classification has been researched before from the viewpoint of self-driving vehicles, driver assistance systems, and the use of signs in mapping services. Machine vision based inventory of traffic signs consists of detection, classification, localization, and condition analysis of traffic signs. The produced machine vision system performance is estimated with three datasets, from which two of have been been collected for this thesis. Based on the experiments almost all traffic signs can be detected, classified, and located and their condition analysed. In future, the inventory system performance has to be verified in challenging conditions and the system has to be pilot tested.
Resumo:
The present report describes the development of a technique for automatic wheezing recognition in digitally recorded lung sounds. This method is based on the extraction and processing of spectral information from the respiratory cycle and the use of these data for user feedback and automatic recognition. The respiratory cycle is first pre-processed, in order to normalize its spectral information, and its spectrogram is then computed. After this procedure, the spectrogram image is processed by a two-dimensional convolution filter and a half-threshold in order to increase the contrast and isolate its highest amplitude components, respectively. Thus, in order to generate more compressed data to automatic recognition, the spectral projection from the processed spectrogram is computed and stored as an array. The higher magnitude values of the array and its respective spectral values are then located and used as inputs to a multi-layer perceptron artificial neural network, which results an automatic indication about the presence of wheezes. For validation of the methodology, lung sounds recorded from three different repositories were used. The results show that the proposed technique achieves 84.82% accuracy in the detection of wheezing for an isolated respiratory cycle and 92.86% accuracy for the detection of wheezes when detection is carried out using groups of respiratory cycles obtained from the same person. Also, the system presents the original recorded sound and the post-processed spectrogram image for the user to draw his own conclusions from the data.
Resumo:
La documentation des programmes aide les développeurs à mieux comprendre le code source pendant les tâches de maintenance. Toutefois, la documentation n’est pas toujours disponible ou elle peut être de mauvaise qualité. Le recours à la redocumentation s’avère ainsi nécessaire. Dans ce contexte, nous proposons de faire la redocumentation en générant des commentaires par application de techniques de résumé par extraction. Pour mener à bien cette tâche, nous avons commencé par faire une étude empirique pour étudier les aspects quantitatifs et qualitatifs des commentaires. En particulier, nous nous sommes intéressés à l’étude de la distribution des commentaires par rapport aux différents types d’instructions et à la fréquence de documentation de chaque type. Aussi, nous avons proposé une taxonomie de commentaires pour classer les commentaires selon leur contenu et leur qualité. Suite aux résultats de l’étude empirique, nous avons décidé de résumer les classes Java par extraction des commentaires des méthodes/constructeurs. Nous avons défini plusieurs heuristiques pour déterminer les commentaires les plus pertinents à l’extraction. Ensuite, nous avons appliqué ces heuristiques sur les classes Java de trois projets pour en générer les résumés. Enfin, nous avons comparé les résumés produits (les commentaires produits) à des résumés références (les commentaires originaux) en utilisant la métrique ROUGE.
Resumo:
Le Ministère des Ressources Naturelles et de la Faune (MRNF) a mandaté la compagnie de géomatique SYNETIX inc. de Montréal et le laboratoire de télédétection de l’Université de Montréal dans le but de développer une application dédiée à la détection automatique et la mise à jour du réseau routier des cartes topographiques à l’échelle 1 : 20 000 à partir de l’imagerie optique à haute résolution spatiale. À cette fin, les mandataires ont entrepris l’adaptation du progiciel SIGMA0 qu’ils avaient conjointement développé pour la mise à jour cartographique à partir d’images satellitales de résolution d’environ 5 mètres. Le produit dérivé de SIGMA0 fut un module nommé SIGMA-ROUTES dont le principe de détection des routes repose sur le balayage d’un filtre le long des vecteurs routiers de la cartographie existante. Les réponses du filtre sur des images couleurs à très haute résolution d’une grande complexité radiométrique (photographies aériennes) conduisent à l’assignation d’étiquettes selon l’état intact, suspect, disparu ou nouveau aux segments routiers repérés. L’objectif général de ce projet est d’évaluer la justesse de l’assignation des statuts ou états en quantifiant le rendement sur la base des distances totales détectées en conformité avec la référence ainsi qu’en procédant à une analyse spatiale des incohérences. La séquence des essais cible d’abord l’effet de la résolution sur le taux de conformité et dans un second temps, les gains escomptés par une succession de traitements de rehaussement destinée à rendre ces images plus propices à l’extraction du réseau routier. La démarche globale implique d’abord la caractérisation d’un site d’essai dans la région de Sherbrooke comportant 40 km de routes de diverses catégories allant du sentier boisé au large collecteur sur une superficie de 2,8 km2. Une carte de vérité terrain des voies de communication nous a permis d’établir des données de référence issues d’une détection visuelle à laquelle sont confrontés les résultats de détection de SIGMA-ROUTES. Nos résultats confirment que la complexité radiométrique des images à haute résolution en milieu urbain bénéficie des prétraitements telles que la segmentation et la compensation d’histogramme uniformisant les surfaces routières. On constate aussi que les performances présentent une hypersensibilité aux variations de résolution alors que le passage entre nos trois résolutions (84, 168 et 210 cm) altère le taux de détection de pratiquement 15% sur les distances totales en concordance avec la référence et segmente spatialement de longs vecteurs intacts en plusieurs portions alternant entre les statuts intact, suspect et disparu. La détection des routes existantes en conformité avec la référence a atteint 78% avec notre plus efficace combinaison de résolution et de prétraitements d’images. Des problèmes chroniques de détection ont été repérés dont la présence de plusieurs segments sans assignation et ignorés du processus. Il y a aussi une surestimation de fausses détections assignées suspectes alors qu’elles devraient être identifiées intactes. Nous estimons, sur la base des mesures linéaires et des analyses spatiales des détections que l’assignation du statut intact devrait atteindre 90% de conformité avec la référence après divers ajustements à l’algorithme. La détection des nouvelles routes fut un échec sans égard à la résolution ou au rehaussement d’image. La recherche des nouveaux segments qui s’appuie sur le repérage de points potentiels de début de nouvelles routes en connexion avec les routes existantes génère un emballement de fausses détections navigant entre les entités non-routières. En lien avec ces incohérences, nous avons isolé de nombreuses fausses détections de nouvelles routes générées parallèlement aux routes préalablement assignées intactes. Finalement, nous suggérons une procédure mettant à profit certaines images rehaussées tout en intégrant l’intervention humaine à quelques phases charnières du processus.
Resumo:
Cette thèse présente le résultat de plusieurs années de recherche dans le domaine de la génération automatique de résumés. Trois contributions majeures, présentées sous la forme d'articles publiés ou soumis pour publication, en forment le coeur. Elles retracent un cheminement qui part des méthodes par extraction en résumé jusqu'aux méthodes par abstraction. L'expérience HexTac, sujet du premier article, a d'abord été menée pour évaluer le niveau de performance des êtres humains dans la rédaction de résumés par extraction de phrases. Les résultats montrent un écart important entre la performance humaine sous la contrainte d'extraire des phrases du texte source par rapport à la rédaction de résumés sans contrainte. Cette limite à la rédaction de résumés par extraction de phrases, observée empiriquement, démontre l'intérêt de développer d'autres approches automatiques pour le résumé. Nous avons ensuite développé un premier système selon l'approche Fully Abstractive Summarization, qui se situe dans la catégorie des approches semi-extractives, comme la compression de phrases et la fusion de phrases. Le développement et l'évaluation du système, décrits dans le second article, ont permis de constater le grand défi de générer un résumé facile à lire sans faire de l'extraction de phrases. Dans cette approche, le niveau de compréhension du contenu du texte source demeure insuffisant pour guider le processus de sélection du contenu pour le résumé, comme dans les approches par extraction de phrases. Enfin, l'approche par abstraction basée sur des connaissances nommée K-BABS est proposée dans un troisième article. Un repérage des éléments d'information pertinents est effectué, menant directement à la génération de phrases pour le résumé. Cette approche a été implémentée dans le système ABSUM, qui produit des résumés très courts mais riches en contenu. Ils ont été évalués selon les standards d'aujourd'hui et cette évaluation montre que des résumés hybrides formés à la fois de la sortie d'ABSUM et de phrases extraites ont un contenu informatif significativement plus élevé qu'un système provenant de l'état de l'art en extraction de phrases.
Resumo:
This thesis analyses certain problems in Inventories and Queues. There are many situations in real-life where we encounter models as described in this thesis. It analyses in depth various models which can be applied to production, storag¢, telephone traffic, road traffic, economics, business administration, serving of customers, operations of particle counters and others. Certain models described here is not a complete representation of the true situation in all its complexity, but a simplified version amenable to analysis. While discussing the models, we show how a dependence structure can be suitably introduced in some problems of Inventories and Queues. Continuous review, single commodity inventory systems with Markov dependence structure introduced in the demand quantities, replenishment quantities and reordering levels are considered separately. Lead time is assumed to be zero in these models. An inventory model involving random lead time is also considered (Chapter-4). Further finite capacity single server queueing systems with single/bulk arrival, single/bulk services are also discussed. In some models the server is assumed to go on vacation (Chapters 7 and 8). In chapters 5 and 6 a sort of dependence is introduced in the service pattern in some queuing models.
Resumo:
In recent years there is an apparent shift in research from content based image retrieval (CBIR) to automatic image annotation in order to bridge the gap between low level features and high level semantics of images. Automatic Image Annotation (AIA) techniques facilitate extraction of high level semantic concepts from images by machine learning techniques. Many AIA techniques use feature analysis as the first step to identify the objects in the image. However, the high dimensional image features make the performance of the system worse. This paper describes and evaluates an automatic image annotation framework which uses SURF descriptors to select right number of features and right features for annotation. The proposed framework uses a hybrid approach in which k-means clustering is used in the training phase and fuzzy K-NN classification in the annotation phase. The performance of the system is evaluated using standard metrics.
Resumo:
The span of writer identification extends to broad domes like digital rights administration, forensic expert decisionmaking systems, and document analysis systems and so on. As the success rate of a writer identification scheme is highly dependent on the features extracted from the documents, the phase of feature extraction and therefore selection is highly significant for writer identification schemes. In this paper, the writer identification in Malayalam language is sought for by utilizing feature extraction technique such as Scale Invariant Features Transform (SIFT).The schemes are tested on a test bed of 280 writers and performance evaluated
Resumo:
The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing
Resumo:
A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
Automatic keyword or keyphrase extraction is concerned with assigning keyphrases to documents based on words from within the document. Previous studies have shown that in a significant number of cases author-supplied keywords are not appropriate for the document to which they are attached. This can either be because they represent what the author believes the paper is about not what it actually is, or because they include keyphrases which are more classificatory than explanatory e.g., “University of Poppleton” instead of “Knowledge Discovery in Databases”. Thus, there is a need for a system that can generate appropriate and diverse range of keyphrases that reflect the document. This paper proposes a solution that examines the synonyms of words and phrases in the document to find the underlying themes, and presents these as appropriate keyphrases. The primary method explores taking n-grams of the source document phrases, and examining the synonyms of these, while the secondary considers grouping outputs by their synonyms. The experiments undertaken show the primary method produces good results and that the secondary method produces both good results and potential for future work.