951 resultados para Scaling
Resumo:
This is the end of the scaling analysis we saw in class on Friday. In class, we managed to scale the mass conservation equation and the x-momentum equation, but we didn't finish scaling the z-momentum equation in order to arrive at the hydrostatic approximation.
Resumo:
This project investigates the effectiveness and feasibility of scaling-up an eco-bio-social approach for implementing an integrated community-based approach for dengue prevention in comparison with existing insecticide-based and emerging biolarvicide-based programs in an endemic setting in Machala, Ecuador.
Resumo:
We unfold a profound relationship between the dynamics of finite-size perturbations in spatially extended chaotic systems and the universality class of Kardar-Parisi-Zhang (KPZ). We show how this relationship can be exploited to obtain a complete theoretical description of the bred vectors dynamics. The existence of characteristic length/time scales, the spatial extent of spatial correlations and how to time it, and the role of the breeding amplitude are all analyzed in the light of our theory. Implications to weather forecasting based on ensembles of initial conditions are also discussed.
Resumo:
Utilising the expressive power of S-Expressions in Learning Classifier Systems often prohibitively increases the search space due to increased flexibility of the endcoding. This work shows that selection of appropriate S-Expression functions through domain knowledge improves scaling in problems, as expected. It is also known that simple alphabets perform well on relatively small sized problems in a domain, e.g. ternary alphabet in the 6, 11 and 20 bit MUX domain. Once fit ternary rules have been formed it was investigated whether higher order learning was possible and whether this staged learning facilitated selection of appropriate functions in complex alphabets, e.g. selection of S-Expression functions. This novel methodology is shown to provide compact results (135-MUX) and exhibits potential for scaling well (1034-MUX), but is only a small step towards introducing abstraction to LCS.
Resumo:
The scaling of metabolic rates to body size is widely considered to be of great biological and ecological importance, and much attention has been devoted to determining its theoretical and empirical value. Most debate centers on whether the underlying power law describing metabolic rates is 2/3 (as predicted by scaling of surface area/volume relationships) or 3/4 ("Kleiber's law"). Although recent evidence suggests that empirically derived exponents vary among clades with radically different metabolic strategies, such as ectotherms and endotherms, models, such as the metabolic theory of ecology, depend on the assumption that there is at least a predominant, if not universal, metabolic scaling exponent. Most analyses claimed to support the predictions of general models, however, failed to control for phylogeny. We used phylogenetic generalized least-squares models to estimate allometric slopes for both basal metabolic rate (BMR) and field metabolic rate (FMR) in mammals. Metabolic rate scaling conformed to no single theoretical prediction, but varied significantly among phylogenetic lineages. In some lineages we found a 3/4 exponent, in others a 2/3 exponent, and in yet others exponents differed significantly from both theoretical values. Analysis of the phylogenetic signal in the data indicated that the assumptions of neither species-level analysis nor independent contrasts were met. Analyses that assumed no phylogenetic signal in the data (species-level analysis) or a strong phylogenetic signal (independent contrasts), therefore, returned estimates of allometric slopes that were erroneous in 30% and 50% of cases, respectively. Hence, quantitative estimation of the phylogenetic signal is essential for determining scaling exponents. The lack of evidence for a predominant scaling exponent in these analyses suggests that general models of metabolic scaling, and macro-ecological theories that depend on them, have little explanatory power.
Resumo:
It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always <1, >2/3, and often very close to 3/4. The 3/4 exponent emerges naturally from two models of resource distribution networks, radial explosion and hierarchically branched, which incorporate a minimum of specific details. Both models show that the exponent is 2/3 if velocity of flow remains constant, but can attain a maximum value of 3/4 if velocity scales with its maximum exponent, 1/12. Quarterpower scaling can arise even when there is no underlying fractality. The canonical “fourth dimension” in biological scaling relations can result from matching the velocity of flow through the network to the linear dimension of the terminal “service volume” where resources are consumed. These models have broad applicability for the optimal design of biological and engineered systems where energy, materials, or information are distributed from a single source.
Resumo:
Over many millions of years of independent evolution, placental, marsupial and monotreme mammals have diverged conspicuously in physiology, life history and reproductive ecology. The differences in life histories are particularly striking. Compared with placentals, marsupials exhibit shorter pregnancy, smaller size of offspring at birth and longer period of lactation in the pouch. Monotremes also exhibit short pregnancy, but incubate embryos in eggs, followed by a long period of post-hatching lactation. Using a large sample of mammalian species, we show that, remarkably, despite their very different life histories, the scaling of production rates is statistically indistinguishable across mammalian lineages. Apparently all mammals are subject to the same fundamental metabolic constraints on productivity, because they share similar body designs, vascular systems and costs of producing new tissue.