957 resultados para Safety instrumented system
Resumo:
Among the variety of road users and vehicle types that travel on U.S. public roadways, slow moving vehicles (SMVs) present unique safety and operations issues. SMVs include vehicles that do not maintain a constant speed of 25 mph, such as large farm equipment, construction vehicles, or horse-drawn buggies. Though the number of crashes involving SMVs is relatively small, SMV crashes tend to be severe. Additionally, SMVs can be encountered regularly on non-Interstate/non-expressway public roadways, but motorists may not be accustomed to these vehicles. This project was designed to improve transportation safety for SMVs on Iowa’s public roadway system. This report includes a literature review that shows various SMV statistics and laws across the United States, a crash study based on three years of Iowa SMV crash data, and recommendations from the SMV community.
Resumo:
R. solanacearum was ranked in a recent survey the second most important bacterial plant pathogen, following the widely used research model Pseudomonas syringae (Mansfield et al., 2012). The main reason is that bacterial wilt caused by R. solanacearum is the world"s most devastating bacterial plant disease (http://faostat.fao.org), threatening food safety in tropical and subtropical agriculture, especially in China, Bangladesh, Bolivia and Uganda (Martin and French, 1985). This is due to the unusually wide host range of the bacterium, its high persistence and because resistant crop varieties are unavailable. In addition, R. solanacearum has been established as a model bacterium for plant pathology thanks to pioneering molecular and genomic studies (Boucher et al., 1985; Cunnac et al., 2004b; Mukaihara et al., 2010; Occhialini et al., 2005; Salanoubat et al., 2002). As for many bacterial pathogens, the main virulence determinant in R. solanacearum is the type III secretion system (T3SS) (Boucher et al., 1994), which injects a number of effector proteins into plant cells causing disease in hosts or an hypersensitive response in resistant plants. In this article we discuss the current state in the study of the R. solanacearum T3SS, stressing the latest findings and future perspectives.
Resumo:
In April 2008 a preliminary investigation of fatal and major injury crashes on Iowa’s primary road system from 2001 through 2007 was conducted by the Iowa Department of Transportation, Office of Traffic and Safety. A mapping of these data revealed an apparent concentration of these serious crashes on a section of Iowa 25 north of Creston. Based on this information, a road safety audit of this roadway section was requested by the Office of Traffic and Safety. Iowa 25 is a two-lane asphaltic concrete pavement roadway, 22 ft in width with approximately 6 ft wide granular shoulders. Originally constructed in 1939, the roadway was last rehabilitated in 1996 with a 4-in. asphalt overlay. Except for shoulder paving through a curve area, no additional work beyond routine maintenance has been accomplished in the section. The 2004 traffic map indicates that IA 25 has a traffic volume of approximately 2070 vehicles per day with 160 commercial vehicles. The posted speed is 55 mph. This report contains a discussion of audit team findings, crash and roadway data, and recommendations for possible mitigation of safety concerns for this roadway section.
Resumo:
Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa’s extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described.
Resumo:
Adverse weather conditions dramatically affect the nation’s surface transportation system. The development of a prototype winter Maintenance Decision Support System (MDSS) is part of the Federal Highway Administration’s effort to produce a prototype tool for decision support to winter road maintenance managers to help make the highways safer for the traveling public. The MDSS is based on leading diagnostic and prognostic weather research capabilities and road condition algorithms, which are being developed at national research centers. In 2003, the Iowa Department of Transportation was chosen as a field test bed for the continuing development of this important research program. The Center for Transportation Research and Education assisted the Iowa Department of Transportation by collecting and analyzing surface condition data. The Federal Highway Administration also selected five national research centers to participate in the development of the prototype MDSS. It is anticipated that components of the prototype MDSS system developed by this project will ultimately be deployed by road operating agencies, including state departments of transportation, and generally supplied by private vendors.
Resumo:
The Iowa General Assembly, during its 2010 legislative session, created a new body, the Public Safety Advisory Board (PSAB). The purpose of the Board is to provide the General Assembly with an analysis of current and proposed criminal code provisions. The mission of this Board is to provide research, evaluation, and data to the General Assembly to facilitate improvement in the criminal justice system in Iowa in terms of public safety, improved outcomes, and appropriate use of public resources.
Resumo:
Young women in the juvenile justice system present with characteristics and experiences that differentiate them from their male counterparts. As such, the juvenile justice system in Iowa must consider these factors if it is to effectively and efficiently impact recidivism, rehabilitation and public safety.
Resumo:
Rural intersections account for 30% of crashes in rural areas and 6% of all fatal crashes, representing a significant but poorly understood safety problem. Transportation agencies have traditionally implemented countermeasures to address rural intersection crashes but frequently do not understand the dynamic interaction between the driver and roadway and the driver factors leading to these types of crashes. The Second Strategic Highway Research Program (SHRP 2) conducted a large-scale naturalistic driving study (NDS) using instrumented vehicles. The study has provided a significant amount of on-road driving data for a range of drivers. The present study utilizes the SHRP 2 NDS data as well as SHRP 2 Roadway Information Database (RID) data to observe driver behavior at rural intersections first hand using video, vehicle kinematics, and roadway data to determine how roadway, driver, environmental, and vehicle factors interact to affect driver safety at rural intersections. A model of driver braking behavior was developed using a dataset of vehicle activity traces for several rural stop-controlled intersections. The model was developed using the point at which a driver reacts to the upcoming intersection by initiating braking as its dependent variable, with the driver’s age, type and direction of turning movement, and countermeasure presence as independent variables. Countermeasures such as on-pavement signing and overhead flashing beacons were found to increase the braking point distance, a finding that provides insight into the countermeasures’ effect on safety at rural intersections. The results of this model can lead to better roadway design, more informed selection of traffic control and countermeasures, and targeted information that can inform policy decisions. Additionally, a model of gap acceptance was attempted but was ultimately not developed due to the small size of the dataset. However, a protocol for data reduction for a gap acceptance model was determined. This protocol can be utilized in future studies to develop a gap acceptance model that would provide additional insight into the roadway, vehicle, environmental, and driver factors that play a role in whether a driver accepts or rejects a gap.
Resumo:
The safe use of nuclear power plants (NPPs) requires a deep understanding of the functioning of physical processes and systems involved. Studies on thermal hydraulics have been carried out in various separate effects and integral test facilities at Lappeenranta University of Technology (LUT) either to ensure the functioning of safety systems of light water reactors (LWR) or to produce validation data for the computer codes used in safety analyses of NPPs. Several examples of safety studies on thermal hydraulics of the nuclear power plants are discussed. Studies are related to the physical phenomena existing in different processes in NPPs, such as rewetting of the fuel rods, emergency core cooling (ECC), natural circulation, small break loss-of-coolant accidents (SBLOCA), non-condensable gas release and transport, and passive safety systems. Studies on both VVER and advanced light water reactor (ALWR) systems are included. The set of cases include separate effects tests for understanding and modeling a single physical phenomenon, separate effects tests to study the behavior of a NPP component or a single system, and integral tests to study the behavior of the whole system. In the studies following steps can be found, not necessarily in the same study. Experimental studies as such have provided solutions to existing design problems. Experimental data have been created to validate a single model in a computer code. Validated models are used in various transient analyses of scaled facilities or NPPs. Integral test data are used to validate the computer codes as whole, to see how the implemented models work together in a code. In the final stage test results from the facilities are transferred to the NPP scale using computer codes. Some of the experiments have confirmed the expected behavior of the system or procedure to be studied; in some experiments there have been certain unexpected phenomena that have caused changes to the original design to avoid the recognized problems. This is the main motivation for experimental studies on thermal hydraulics of the NPP safety systems. Naturally the behavior of the new system designs have to be checked with experiments, but also the existing designs, if they are applied in the conditions that differ from what they were originally designed for. New procedures for existing reactors and new safety related systems have been developed for new nuclear power plant concepts. New experiments have been continuously needed.
Resumo:
BACKGROUND: To ensure vaccines safety, given the weaknesses of the national pharmacovigilance system in Cameroon, there is a need to identify effective interventions that can contribute to improving AEFI reporting. OBJECTIVE: To assess the effect of: (i) sending weekly SMS, or (ii) weekly supervisory visits on AEFI reporting rate during a meningitis immunization campaign conducted in Cameroon in 2012 using the meningitis A conjugate vaccine (MenAfriVac?). METHODS: Health facilities that met the inclusion criteria were randomly assigned to receive: (i) a weekly standardized SMS, (ii) a weekly standardized supervisory visits or (iii) no intervention. The primary outcome was the reported AEFI incidence rate from week 5 to 8 after the immunization campaign. Poisson regression model was used to estimate the effect of interventions after adjusting for health region, type of health facility, type and position of health workers as well as the cumulative number of AEFI reported from weeks 1 to 4. RESULTS: A total of 348 (77.2%) of 451 health facility were included, and 116 assigned to each of three groups. The incidence rate of reported AEFI per 100 health facility per week was 20.0 (15.9-24.1) in the SMS group, 40.2 (34.4-46.0) in supervision group and 13.6 (10.1-16.9) in the control group. Supervision led to a significant increase of AEFI reporting rate compared to SMS [adjusted RR=2.1 (1.6-2.7); p<0.001] and control [RR=2.8(2.1-3.7); p<0.001)] groups. The effect of SMS led to some increase in AEFI reporting rate compared to the control group, but the difference was not statistically significant [RR=1.4(0.8-1.6); p=0.07)]. CONCLUSION: Supervision was more effective than SMS or routine surveillance in improving AEFI reporting rate. It should be part of any AEFI surveillance system. SMS could be useful in improving AEFI reporting rates but strategies need to be found to improve its effectiveness, and thus maximize its benefits.
Resumo:
BACKGROUND: There is limited safety information on most drugs used during pregnancy. This is especially true for medication against tropical diseases because pharmacovigilance systems are not much developed in these settings. The aim of the present study was to demonstrate feasibility of using Health and Demographic Surveillance System (HDSS) as a platform to monitor drug safety in pregnancy. METHODS: Pregnant women with gestational age below 20 weeks were recruited from Reproductive and Child Health (RCH) clinics or from monthly house visits carried out for the HDSS. A structured questionnaire was used to interview pregnant women. Participants were followed on monthly basis to record any new drug used as well as pregnancy outcome. RESULTS: 1089 pregnant women were recruited; 994 (91.3%) completed the follow-up until delivery. 98% women reported to have taken at least one medication during pregnancy, mainly those used in antenatal programmes. Other most reported drugs were analgesics (24%), antibiotics (17%), and antimalarial (15%), excluding IPTp. Artemether-lumefantrine (AL) was the most used antimalarial for treating illness by nearly 3/4 compared to other groups of malaria drugs. Overall, antimalarial and antibiotic exposures in pregnancy were not significantly associated with adverse pregnancy outcome. Iron and folic acid supplementation were associated with decreased risk of miscarriage/stillbirth (OR 0.1; 0.08 - 0.3). CONCLUSION: Almost all women were exposed to medication during pregnancy. Exposure to iron and folic acid had a beneficial effect on pregnancy outcome. HDSS proved to be a useful platform to establish a reliable pharmacovigilance system in resource-limited countries. Widening drug safety information is essential to facilitate evidence based risk-benefit decision for treatment during pregnancy, a major challenge with newly marketed medicines.
Resumo:
The application of the three voltage level 20/1/0.4 distribution system in Finland has proved to be an economic solution to enhance the reability of electricity distribution. By using 1 kV voltage level between medium and low voltage networks, the improvement in reability could be reached especially inaerial lines networks. Also considerable savings in investment and outage costscould be archieved compared to the traditional distribution system. This master's thesis is focused on the describing the situation in Russian distribution netwoks and consequent analyses the possibility of applying 1000V distribution system in Russia. The goal is to investigate on the basis of Finnish experience is any possible installation targets in Russia for the new system. Compatibility with Russian safety and quality standards are also studied in this thesis.
Resumo:
BACKGROUND: The risks of a public exposure to a sudden decompression, until now, have been related to civil aviation and, at a lesser extent, to diving activities. However, engineers are currently planning the use of low pressure environments for underground transportation. This method has been proposed for the future Swissmetro, a high-speed underground train designed for inter-urban linking in Switzerland. HYPOTHESIS: The use of a low pressure environment in an underground public transportation system must be considered carefully regarding the decompression risks. Indeed, due to the enclosed environment, both decompression kinetics and safety measures may differ from aviation decompression cases. METHOD: A theoretical study of decompression risks has been conducted at an early stage of the Swissmetro project. A three-compartment theoretical model, based on the physics of fluids, has been implemented with flow processing software (Ithink 5.0). Simulations have been conducted in order to analyze "decompression scenarios" for a wide range of parameters, relevant in the context of the Swissmetro main study. RESULTS: Simulation results cover a wide range from slow to explosive decompression, depending on the simulation parameters. Not surprisingly, the leaking orifice area has a tremendous impact on barotraumatic effects, while the tunnel pressure may significantly affect both hypoxic and barotraumatic effects. Calculations have also shown that reducing the free space around the vehicle may mitigate significantly an accidental decompression. CONCLUSION: Numeric simulations are relevant to assess decompression risks in the future Swissmetro system. The decompression model has proven to be useful in assisting both design choices and safety management.
Resumo:
This thesis gives an overview of the validation process for thermal hydraulic system codes and it presents in more detail the assessment and validation of the French code CATHARE for VVER calculations. Three assessment cases are presented: loop seal clearing, core reflooding and flow in a horizontal steam generator. The experience gained during these assessment and validation calculations has been used to analyze the behavior of the horizontal steam generator and the natural circulation in the geometry of the Loviisa nuclear power plant. The cases presented are not exhaustive, but they give a good overview of the work performed by the personnel of Lappeenranta University of Technology (LUT). Large part of the work has been performed in co-operation with the CATHARE-team in Grenoble, France. The design of a Russian type pressurized water reactor, VVER, differs from that of a Western-type PWR. Most of thermal-hydraulic system codes are validated only for the Western-type PWRs. Thus, the codes should be assessed and validated also for VVER design in order to establish any weaknesses in the models. This information is needed before codes can be used for the safety analysis. Theresults of the assessment and validation calculations presented here show that the CATHARE code can be used also for the thermal-hydraulic safety studies for VVER type plants. However, some areas have been indicated which need to be reassessed after further experimental data become available. These areas are mostly connected to the horizontal stem generators, like condensation and phase separation in primary side tubes. The work presented in this thesis covers a large numberof the phenomena included in the CSNI code validation matrices for small and intermediate leaks and for transients. Also some of the phenomena included in the matrix for large break LOCAs are covered. The matrices for code validation for VVER applications should be used when future experimental programs are planned for code validation.
Resumo:
Terrestrial Trunked Radio (TETRA) on moderni digitaalinen matkapuhelinjärjestelmän standardi, joka on suunniteltu täyttämään erityisesti viranomaisten vaativat tarpeet turvallisuuden ja luotettavuuden suhteen. Ohjelmiston testaus on tärkeä osa sen laadun takaamiseksi. Testaus on jaettu useisiin vaiheisiin ja se kattaa koko ohjelmiston elinkaaren: ohjelmiston kehittelystä alkaen asiakkaalle lähetettyyn valmiiseen tuotteeseen saakka. Toiminnallisuustestauksen suorittaa joko ohjelmiston suunnittelijat tai erillinen testausryhmä käyttäen Nokia TETRA-järjestelmän testauslaboratoriota. Testauksen tarkoituksena on varmistaa, että ohjelmisto, sen aliohjelmat ja ominaisuudet täyttävät niille annetut toiminnalliset ja laadulliset vaatimukset. Tämä diplomityö antaa yleiskuvan toiminnallisuustestausprosessista Nokia TETRA järjestelmän laboratoriossa. Se tarjoaa esimerkkitestitapauksen avulla kokonaiskuvan siitä, kuinka toiminnallisuustestausprosessi suoritetaan alusta loppuun.