981 resultados para SUPRAMOLECULAR MATERIALS
Resumo:
Materials, methods and systems are provided for the purifn., filtration and/or sepn. of certain mols. such as certain size biomols. Certain embodiments relate to supports contg. at least one polymethacrylate polymer engineered to have certain pore diams. and other properties, and which can be functionally adapted to for certain purifications, filtrations and/or sepns. Biomols. are selected from a group consisting of: polynucleotide mols., oligonucleotide mols. including antisense oligonucleotide mols. such as antisense RNA and other oligonucleotide mols. that are inhibitory of gene function such as small interfering RNA (siRNA), polypeptides including proteinaceous infective agents such as prions, for example, the infectious agent for CJD, and infectious agents such as viruses and phage.
Resumo:
Tertiary institutions now face serious challenges. Modern industry requires engineering graduates with strong knowledge of modern technologies, highly practical focus, management skills, ability to work individually and in a team, understanding of environmental issues and many other skills and graduate attributes. Institutions in the tertiary sector change courses and modify curriculum to reflect challenges of the modern industry and make engineering graduates better prepared for the “real world”. Queensland University of Technology in the recent years introduced an innovative structure of engineering courses with a common core for Bachelor of Engineering Mechanical, Infomechatronics and Medical, where manufacturing is taught in conjunction with engineering design and engineering materials. In this paper we discuss the innovative curriculum structure, teaching and learning approaches of coherent delivery of manufacturing in conjunction with engineering design and
Resumo:
The silk protein fibroin (Bombyx mori) provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial (HLE) cells (Tissue Eng A. 14(2008)1203-11). We extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Also, we investigate the ability to produce a bi-layered composite scaffold of fibroin with an upper HLE layer and lower HLS layer.
Resumo:
Nanotubes and nanosheets are low-dimensional nanomaterials with unique properties that can be exploited for numerous applications. This book offers a complete overview of their structure, properties, development, modeling approaches, and practical use. It focuses attention on boron nitride (BN) nanotubes, which have had major interest given their special high-temperature properties, as well as graphene nanosheets, BN nanosheets, and metal oxide nanosheets. Key topics include surface functionalization of nanotubes for composite applications, wetting property changes for biocompatible environments, and graphene for energy storage applications
Resumo:
A series of macro–mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesized. The materials were calcined at 723 K and were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy (UV–visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100 °C), which makes it possible to synthesize such materials on industrial scale. The performance–morphology relationship of as-synthesized TiO2/Al2O3 nanocomposites was investigated by the photocatalytic degradation of a model organic pollutant under UV irradiation. The samples with 1D (fibrous) morphology exhibited superior catalytic performance than the samples without, such as titania microspheres.
Resumo:
This Special Issue presents recent research advances in various aspects of advanced nanomaterials including synthesis, micro- and nanostructures, mechanical properties, modeling, and applications for material nanotechnology community. In particular, it aims to reflect recent advances in mechanical behaviors, for example, stiffness, strength, ductility, fatigue, and wear resistance, of various nanomaterials including nanocrystalline, inorganic, nonmetallic nanomaterials, composites with nanosized fillers, and biomaterials with nanosized structures. The role of this Special Issue is to bridge the gaps among fabrication techniques, experimental techniques, numerical modeling, and applications for some new nanomaterials and to investigate some key issues related to the mechanical properties of the nanomaterials. It brings together researchers working at the frontier of the mechanical behavior of nanomaterials...
Resumo:
Developing and maintaining a successful institutional repository for research publications requires a considerable investment by the institution. Most of the money is spent on developing the skill-sets of existing staff or hiring new staff with the necessary skills. The return on this investment can be magnified by using this valuable infrastructure to curate collections of other materials such as learning objects, student work, conference proceedings and institutional or local community heritage materials. When Queensland University of Technology (QUT) implemented its repository for research publications (QUT ePrints) over 11 years ago, it was one of the first institutional repositories to be established in Australia. Currently, the repository holds over 29,000 open access research publications and the cumulative total number of full-text downloads for these document now exceeds 16 million. The full-text deposit rate for recently-published peer reviewed papers (currently over 74%) shows how well the repository has been embraced by QUT researchers. The success of QUT ePrints has resulted in requests to accommodate a plethora of materials which are ‘out of scope’ for this repository. QUT Library saw this as an opportunity to use its repository infrastructure (software, technical know-how and policies) to develop and implement a metadata repository for its research datasets (QUT Research Data Finder), a repository for research-related software (QUT Software Finder) and to curate a number of digital collections of institutional and local community heritage materials (QUT Digital Collections). This poster describes the repositories and digital collections curated by QUT Library and outlines the value delivered to the institution, and the wider community, by these initiatives.
Resumo:
The marginalisation that Indigenous secondary students experience in zoology science lessons can be attributed to a chasm they experience between their life in community and the classroom. The study found that the integration of Indigenous and Western science knowledge can provide transformative learning experiences for students which work to strengthen their sense of belonging to community and school. Using action research, the study investigated the integration of both-ways science education into students' zoology lessons. It privileged the community's cultural expertise, practices and connections with students and their families, which worked to enhance student engagement in their learning.
Resumo:
This thesis develops comprehensive mathematical models for an advanced drying technology Intermittent Microwave Convective Drying (IMCD). The models provide an improved physical understanding of the heat and mass transport during the drying process, which will help to improve the quality of dried food and energy efficiency of the process, as well as will increase the ability of automation and optimization. The final model in this thesis represents the most comprehensive fundamental multiphase model for IMCD that considers 3D electromagnetics coupled with multiphase porous media transport processes. The 3D electromagnetics considers Maxwell's equation and multiphase transport model considers three different phases: solid matrix, liquid water and gas consisting water vapour and air. The multiphase transport includes pressure-driven flow, capillary diffusion, binary diffusion, and evaporation. The models developed in this thesis were validated with extensive experimental investigations.
Resumo:
The behavior of small molecules on a surface depends critically on both molecule–substrate and intermolecular interactions. We present here a detailed comparative investigation of 1,3,5-benzene tricarboxylic acid (trimesic acid, TMA) on two different surfaces: highly oriented pyrolytic graphite (HOPG) and single-layer graphene (SLG) grown on a polycrystalline Cu foil. On the basis of high-resolution scanning tunnelling microscopy (STM) images, we show that the epitaxy matrix for the hexagonal TMA chicken wire phase is identical on these two surfaces, and, using density functional theory (DFT) with a non-local van der Waals correlation contribution, we identify the most energetically favorable adsorption geometries. Simulated STM images based on these calculations suggest that the TMA lattice can stably adsorb on sites other than those identified to maximize binding interactions with the substrate. This is consistent with our net energy calculations that suggest that intermolecular interactions (TMA–TMA dimer bonding) are dominant over TMA–substrate interactions in stabilizing the system. STM images demonstrate the robustness of the TMA films on SLG, where the molecular network extends across the variable topography of the SLG substrates and remains intact after rinsing and drying the films. These results help to elucidate molecular behavior on SLG and suggest significant similarities between adsorption on HOPG and SLG.
Resumo:
The influence of graphene oxide (GO) and its surface oxidized debris (OD) on the cure chemistry of an amine cured epoxy resin has been investigated by Fourier Transform Infrared Emission Spectroscopy (FT-IES) and Differential Scanning Calorimetry (DSC). Spectral analysis of IR radiation emitted at the cure temperature from thin films of diglycidyl ether of bisphenol A epoxy resin (DGEBA) and 4,4'-diaminodiphenylmethane (DDM) curing agent with and without GO allowed the cure kinetics of the interphase between the bulk resin and GO to be monitored in real time, by measuring both the consumption of primary (1°) amine and epoxy groups, formation of ether groups as well as computing the profiles for formation of secondary (2°) and tertiary (3°) amines. OD was isolated from as-produced GO (aGO) by a simple autoclave method to give OD-free autoclaved GO (acGO). It has been found that the presence of OD on the GO prevents active sites on GO surfaces fully catalysing and participating in the reaction of DGEBA with DDM, which results in slower reaction and a lower crosslink density of the three-dimensional networks in the aGO-resin interphase compared to the acGO-resin interphase. We also determined that OD itself promoted DGEBA homopolymerization. A DSC study further confirmed that the aGO nanocomposite exhibited lower Tg while acGO nanocomposite showed higher Tg compared to neat resin because of the difference in crosslink densities of the matrix around the different GOs.
Resumo:
A facile route to prepare catalystically active materials from a galinstan liquid metal alloy is introduced. Sonicating liquid galinstan in alkaline solution or treating it in reducing media results in the creation of solid In/Sn rich microspheres that show catalytic activity toward both potassium ferricyanide and 4-nitrophenol reduction.
Resumo:
The paper is a critical argument foregrounding race, the senses, and the materials of literacy practices. The author argues that counter-colonial literacies in the contemporary times require openly acknowledgement of the influences of white imperialism and racism in dominant schooling practices. The first concern is narrow conceptions of literacy and schooling that follow a white racial script, and which function as a form of historical reproduction, control, and privilege. The second is the need to acknowledge the need to rediscover the sensory nature of literacy practices that is intrinsic to many cultures, and which is transformed in human interactions with new digital forms of textual production. The final argument is the need to attend to the materiality of literacy practices, including the meanings connected to the material ecology. This principle is particularly relevant to Indigenous culture and experience, but likewise, to all digital environments where the materials of literacy practices are continually shifting.