954 resultados para STATIONARY SPACETIMES
Resumo:
Lifshitz spacetimes with the critical exponent z = 2 can be obtained by the dimensional reduction of Schrödinger spacetimes with the critical exponent z = 0. The latter spacetimes are asymptotically AdS solutions of AdS gravity coupled to an axion–dilaton system and can be uplifted to solutions of type IIB supergravity. This basic observation is used to perform holographic renormalization for four-dimensional asymptotically z = 2 locally Lifshitz spacetimes by the Scherk–Schwarz dimensional reduction of the corresponding problem of holographic renormalization for five-dimensional asymptotically locally AdS spacetimes coupled to an axion–dilaton system. We can thus define and characterize a four-dimensional asymptotically locally z = 2 Lifshitz spacetime in terms of five-dimensional AdS boundary data. In this setup the four-dimensional structure of the Fefferman–Graham expansion and the structure of the counterterm action, including the scale anomaly, will be discussed. We find that for asymptotically locally z = 2 Lifshitz spacetimes obtained in this way, there are two anomalies each with their own associated nonzero central charge. Both anomalies follow from the Scherk–Schwarz dimensional reduction of the five-dimensional conformal anomaly of AdS gravity coupled to an axion–dilaton system. Together, they make up an action that is of the Horava–Lifshitz type with a nonzero potential term for z = 2 conformal gravity.
Resumo:
BACKGROUND: There is an increasing demand for comprehensive forms of palliative cancer care, meeting physical as well as emotional, cognitive, spiritual and social needs. Therapy programs of anthroposophic hospitals are aimed at improving health and quality of life (QoL) at these levels. However, data on the influence of these programs on QoL of patients with advanced cancer are scarce. PATIENTS AND METHODS: 144 in-patients with advanced epithelial cancers were treated at the anthroposophic Lukas Klinik, Arlesheim, Switzerland. QoL was assessed upon admission, discharge and after 4 months, using 20 functional scales from the questionnaires EORTC QLQ-C30, HADS and SELT-M. Statistical testing was performed with the Wilcoxon signed rank test. At month 4, subjectively perceived benefits from anthroposophic medicine (AM) and conventional cancer therapy (CCT) were assessed by telephone. OBJECTIVE: The aim was to provide an account of global, physical, emotional, cognitive-spiritual and social QoL developments in advanced cancer patients, during and after in-patient AM treatment, and to investigate subjective benefits from AM and CCT. RESULTS: QoL improvements were observed in all 20 dimensions (12 significant). Compared to related studies, improvements were fairly high. At month 4, QoL scores had decreased but were still above baseline in all 20 dimensions. Both AM and CCT were perceived as beneficial. CONCLUSION: Our data provide evidence that in-patient therapy at an anthroposophic hospital can lead to significant QoL improvements, especially in emotional, but also global, physical, cognitive-spiritual and social aspects. Benefits of AM were experienced on the physical, emotional, cognitive- spiritual and social level. Benefits of CCT were tumor-focused.
Resumo:
Leopard complex spotting is a group of white spotting patterns in horses caused by an incompletely dominant gene (LP) where homozygotes (LP/LP) are also affected with congenital stationary night blindness. Previous studies implicated Transient Receptor Potential Cation Channel, Subfamily M, Member 1 (TRPM1) as the best candidate gene for both CSNB and LP. RNA-Seq data pinpointed a 1378 bp insertion in intron 1 of TRPM1 as the potential cause. This insertion, a long terminal repeat (LTR) of an endogenous retrovirus, was completely associated with LP, testing 511 horses (χ(2)=1022.00, p<0.0005), and CSNB, testing 43 horses (χ(2)=43, p<0.0005). The LTR was shown to disrupt TRPM1 transcription by premature poly-adenylation. Furthermore, while deleterious transposable element insertions should be quickly selected against the identification of this insertion in three ancient DNA samples suggests it has been maintained in the horse gene pool for at least 17,000 years. This study represents the first description of an LTR insertion being associated with both a pigmentation phenotype and an eye disorder.
Resumo:
Cerebral electrical activity is highly nonstationary because the brain reacts to ever changing external stimuli and continuously monitors internal control circuits. However, a large amount of energy is spent to maintain remarkably stationary activity patterns and functional inter-relations between different brain regions. Here we examine linear EEG correlations in the peri-ictal transition of focal onset seizures, which are typically understood to be manifestations of dramatically changing inter-relations. Contrary to expectations we find stable correlation patterns with a high similarity across different patients and different frequency bands. This skeleton of spatial correlations may be interpreted as a signature of standing waves of electrical brain activity constituting a dynamical ground state. Such a state could promote the formation of spatiotemporal neuronal assemblies and may be important for the integration of information stemming from different local circuits of the functional brain network.
Resumo:
We develop further the effective fluid theory of stationary branes. This formalism applies to stationary blackfolds as well as to other equilibrium brane systems at finite temperature. The effective theory is described by a Lagrangian containing the information about the elastic dynamics of the brane embedding as well as the hydrodynamics of the effective fluid living on the brane. The Lagrangian is corrected order-by-order in a derivative expansion, where we take into account the dipole moment of the brane which encompasses finite-thickness corrections, including transverse spin. We describe how to extract the thermodynamics from the Lagrangian and we obtain constraints on the higher-derivative terms with one and two derivatives. These constraints follow by comparing the brane thermodynamics with the conserved currents associated with background Killing vector fields. In particular, we fix uniquely the one- and two-derivative terms describing the coupling of the transverse spin to the background space-time. Finally, we apply our formalism to two blackfold examples, the black tori and charged black rings and compare the latter to a numerically generated solution.
Resumo:
We consider black probes of Anti-de Sitter and Schrödinger spacetimes embedded in string theory and M-theory and construct perturbatively new black hole geometries. We begin by reviewing black string configurations in Anti-de Sitter dual to finite temperature Wilson loops in the deconfined phase of the gauge theory and generalise the construction to the confined phase. We then consider black strings in thermal Schrödinger, obtained via a null Melvin twist of the extremal D3-brane, and construct three distinct types of black string configurations with spacelike as well as lightlike separated boundary endpoints. One of these configurations interpolates between the Wilson loop operators, with bulk duals defined in Anti-de Sitter and another class of Wilson loop operators, with bulk duals defined in Schrödinger. The case of black membranes with boundary endpoints on the M5-brane dual to Wilson surfaces in the gauge theory is analysed in detail. Four types of black membranes, ending on the null Melvin twist of the extremal M5-brane exhibiting the Schrödinger symmetry group, are then constructed. We highlight the differences between Anti-de Sitter and Schrödinger backgrounds and make some comments on the properties of the corresponding dual gauge theories.
Resumo:
Leopard Complex spotting occurs in several breeds of horses and is caused by an incompletely dominant allele (LP). Homozygosity for LP is also associated with congenital stationary night blindness (CSNB) in Appaloosa horses. Previously, LP was mapped to a 6 cm region on ECA1 containing the candidate gene TRPM1 (Transient Receptor Potential Cation Channel, Subfamily M, Member 1) and decreased expression of this gene, measured by qRT-PCR, was identified as the likely cause of both spotting and ocular phenotypes. This study describes investigations for a mutation causing or associated with the Leopard Complex and CSNB phenotype in horses. Re-sequencing of the gene and associated splice sites within the 105 624 bp genomic region of TRPM1 led to the discovery of 18 SNPs. Most of the SNPs did not have a predictive value for the presence of LP. However, one SNP (ECA1:108,249,293 C>T) found within intron 11 had a strong (P < 0.0005), but not complete, association with LP and CSNB and thus is a good marker but unlikely to be causative. To further localize the association, 70 SNPs spanning over two Mb including the TRPM1 gene were genotyped in 192 horses from three different breeds segregating for LP. A single 173 kb haplotype associated with LP and CSNB (ECA1: 108,197,355- 108,370,150) was identified. Illumina sequencing of 300 kb surrounding this haplotype revealed 57 SNP variants. Based on their localization within expressed sequences or regions of high sequence conservation across mammals, six of these SNPs were considered to be the most likely candidate mutations. While the precise function of TRPM1 remains to be elucidated, this work solidifies its functional role in both pigmentation and night vision. Further, this work has identified several potential regulatory elements of the TRPM1 gene that should be investigated further in this and other species.
Resumo:
This paper provides new sufficient conditions for the existence, computation via successive approximations, and stability of Markovian equilibrium decision processes for a large class of OLG models with stochastic nonclassical production. Our notion of stability is existence of stationary Markovian equilibrium. With a nonclassical production, our economies encompass a large class of OLG models with public policy, valued fiat money, production externalities, and Markov shocks to production. Our approach combines aspects of both topological and order theoretic fixed point theory, and provides the basis of globally stable numerical iteration procedures for computing extremal Markovian equilibrium objects. In addition to new theoretical results on existence and computation, we provide some monotone comparative statics results on the space of economies.